IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/123416.html
   My bibliography  Save this paper

Modeling and Forecasting the Probability of Crypto-Exchange Closures: A Forecast Combination Approach

Author

Listed:
  • Magomedov, Said
  • Fantazzini, Dean

Abstract

The popularity of cryptocurrency exchanges has surged in recent years, accompanied by the proliferation of new digital platforms and tokens. However, the issue of credit risk and the reliability of crypto exchanges remain critical, highlighting the need for indicators to assess the safety of investing through these platforms. This study examines a unique, hand-collected dataset of 228 cryptocurrency exchanges operating between April 2011 and May 2024. Using various machine learning algorithms, we identify the key factors contributing to exchange shutdowns, with trading volume, exchange lifespan, and cybersecurity scores emerging as the most significant predictors. Since individual machine learning models often capture distinct data characteristics and exhibit varying error patterns, we employ a forecast combination approach by aggregating multiple predictive distributions. Specifically, we evaluate several specifications of the generalized linear pool (GLP), beta-transformed linear pool (BLP), and beta-mixture combination (BMC). Our findings reveal that the beta-transformed linear pool and the beta-mixture combination achieve the best performances, improving forecast accuracy by approximately 4.1% based on a robust H-measure, which effectively addresses the challenges of misclassification in imbalanced datasets.

Suggested Citation

  • Magomedov, Said & Fantazzini, Dean, 2025. "Modeling and Forecasting the Probability of Crypto-Exchange Closures: A Forecast Combination Approach," MPRA Paper 123416, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:123416
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/123416/1/MPRA_paper_123416.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    2. Dean Fantazzini & Raffaella Calabrese, 2021. "Crypto Exchanges and Credit Risk: Modeling and Forecasting the Probability of Closure," JRFM, MDPI, vol. 14(11), pages 1-23, October.
    3. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
    4. Pedro G. Fonseca & Hugo D. Lopes, 2017. "Calibration of Machine Learning Classifiers for Probability of Default Modelling," Papers 1710.08901, arXiv.org.
    5. Roberto Casarin & Giulia Mantoan & Francesco Ravazzolo, 2016. "Bayesian Calibration of Generalized Pools of Predictive Distributions," Econometrics, MDPI, vol. 4(1), pages 1-24, March.
    6. George Milunovich & Seung Ah Lee, 2022. "Cryptocurrency exchanges: Predicting which markets will remain active," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 945-955, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fantazzini, Dean, 2023. "Assessing the Credit Risk of Crypto-Assets Using Daily Range Volatility Models," MPRA Paper 117141, University Library of Munich, Germany.
    2. Dean Fantazzini, 2022. "Crypto-Coins and Credit Risk: Modelling and Forecasting Their Probability of Death," JRFM, MDPI, vol. 15(7), pages 1-34, July.
    3. Fantazzini, Dean & Korobova, Elena, 2025. "Stablecoins and credit risk: when do they stop being stable?," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 77, pages 46-73.
    4. Fantazzini, Dean & Korobova, Elena, 2025. "Stablecoins and credit risk: when do they stop being stable?," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 77, pages 46-73.
    5. Fatih Ecer & Tolga Murat & Hasan Dinçer & Serhat Yüksel, 2024. "A fuzzy BWM and MARCOS integrated framework with Heronian function for evaluating cryptocurrency exchanges: a case study of Türkiye," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    6. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    7. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    8. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
    9. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024. "Autoregressive conditional betas," Journal of Econometrics, Elsevier, vol. 238(2).
    10. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    11. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    12. Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    13. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    14. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    15. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    16. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    17. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    18. Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
    19. Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
    20. Yang, Xiaoqi & Vagnani, Gianluca & Dong, Yan & Ji, Xu, 2024. "Short selling and firms’ long-term stock return volatility: Evidence from Chinese concept stocks in Hong Kong," Finance Research Letters, Elsevier, vol. 70(C).

    More about this item

    Keywords

    forecast combination; exchange; bitcoin; crypto assets; cryptocurrencies; credit risk; bankruptcy; default probability;
    All these keywords.

    JEL classification:

    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:123416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.