Modeling and Forecasting the Probability of Crypto-Exchange Closures: A Forecast Combination Approach
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Said Magomedov & Dean Fantazzini, 2025. "Modeling and Forecasting the Probability of Crypto-Exchange Closures: A Forecast Combination Approach," JRFM, MDPI, vol. 18(2), pages 1-20, January.
References listed on IDEAS
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Dean Fantazzini & Raffaella Calabrese, 2021.
"Crypto Exchanges and Credit Risk: Modeling and Forecasting the Probability of Closure,"
JRFM, MDPI, vol. 14(11), pages 1-23, October.
- Fantazzini, Dean & Calabrese, Raffaella, 2021. "Crypto-exchanges and Credit Risk: Modelling and Forecasting the Probability of Closure," MPRA Paper 110391, University Library of Munich, Germany.
- Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015.
"Testing the value of probability forecasts for calibrated combining,"
International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
- Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Testing the Value of Probability Forecasts for Calibrated Combining," Discussion Papers 13-02, University at Albany, SUNY, Department of Economics.
- Pedro G. Fonseca & Hugo D. Lopes, 2017. "Calibration of Machine Learning Classifiers for Probability of Default Modelling," Papers 1710.08901, arXiv.org.
- Roberto Casarin & Giulia Mantoan & Francesco Ravazzolo, 2016. "Bayesian Calibration of Generalized Pools of Predictive Distributions," Econometrics, MDPI, vol. 4(1), pages 1-24, March.
- George Milunovich & Seung Ah Lee, 2022. "Cryptocurrency exchanges: Predicting which markets will remain active," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 945-955, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fantazzini, Dean, 2023. "Assessing the Credit Risk of Crypto-Assets Using Daily Range Volatility Models," MPRA Paper 117141, University Library of Munich, Germany.
- Dean Fantazzini, 2022.
"Crypto-Coins and Credit Risk: Modelling and Forecasting Their Probability of Death,"
JRFM, MDPI, vol. 15(7), pages 1-34, July.
- Fantazzini, Dean, 2022. "Crypto Coins and Credit Risk: Modelling and Forecasting their Probability of Death," MPRA Paper 113744, University Library of Munich, Germany.
- Fantazzini, Dean & Korobova, Elena, 2025. "Stablecoins and credit risk: when do they stop being stable?," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 77, pages 46-73.
- Fantazzini, Dean & Korobova, Elena, 2025.
"Stablecoins and credit risk: when do they stop being stable?,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 77, pages 46-73.
- Korobova, Elena & Fantazzini, Dean, 2024. "Stablecoins and credit risk: when do they stop being stable?," MPRA Paper 122951, University Library of Munich, Germany.
- Fatih Ecer & Tolga Murat & Hasan Dinçer & Serhat Yüksel, 2024. "A fuzzy BWM and MARCOS integrated framework with Heronian function for evaluating cryptocurrency exchanges: a case study of Türkiye," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
- Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
- Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019.
"Implied volatility surface predictability: The case of commodity markets,"
Journal of Banking & Finance, Elsevier, vol. 108(C).
- Fearghal Kearney & Han Lin Shang & Lisa Sheenan, 2019. "Implied volatility surface predictability: the case of commodity markets," Papers 1909.11009, arXiv.org.
- Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
- Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024.
"Autoregressive conditional betas,"
Journal of Econometrics, Elsevier, vol. 238(2).
- F. Blasques & Christian Francq & Sébastien Laurent, 2024. "Autoregressive conditional betas," Post-Print hal-04676069, HAL.
- Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
- Mohamed CHIKHI & Claude DIEBOLT, 2022.
"Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation,"
Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
- Mohamed CHIKHI & Claude DIEBOLT, 2021. "Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation," Working Papers of BETA 2021-36, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Mohamed Chikhi & Claude Diebolt, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Post-Print hal-03778331, HAL.
- Claude Diebolt & Mohamed Chikhi, 2021. "Testing The Weak Form Efficiency Of The French Etf Market With Lstar-Anlstgarch Approach Using A Semiparametric Estimation," Working Papers 09-21, Association Française de Cliométrie (AFC).
- Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016.
"Do We Need High Frequency Data to Forecast Variances?,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
- Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Post-Print hal-01448237, HAL.
- Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
- Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
- Yang, Xiaoqi & Vagnani, Gianluca & Dong, Yan & Ji, Xu, 2024. "Short selling and firms’ long-term stock return volatility: Evidence from Chinese concept stocks in Hong Kong," Finance Research Letters, Elsevier, vol. 70(C).
More about this item
Keywords
forecast combination; exchange; bitcoin; crypto assets; cryptocurrencies; credit risk; bankruptcy; default probability;All these keywords.
JEL classification:
- C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
- G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-02-10 (Big Data)
- NEP-CMP-2025-02-10 (Computational Economics)
- NEP-PAY-2025-02-10 (Payment Systems and Financial Technology)
- NEP-RMG-2025-02-10 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:123416. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.