IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v25y2009i03p710-738_09.html
   My bibliography  Save this article

Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression

Author

Listed:
  • Wang, Qiying
  • Phillips, Peter C.B.

Abstract

Asymptotic theory is developed for local time density estimation for a general class of functionals of integrated and fractionally integrated time series. The main result provides a convenient basis for developing a limit theory for nonparametric cointegrating regression and nonstationary autoregression. The treatment directly involves local time estimation and the density function of the processes under consideration, providing an alternative approach to the Markov chain and Fourier integral methods that have been used in other recent work on these problems.

Suggested Citation

  • Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(3), pages 710-738, June.
  • Handle: RePEc:cup:etheor:v:25:y:2009:i:03:p:710-738_09
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466608090269/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hu, Ling & Phillips, Peter C. B., 2004. "Nonstationary discrete choice," Journal of Econometrics, Elsevier, vol. 120(1), pages 103-138, May.
    2. Peter C. B. Phillips, 2001. "Descriptive econometrics for non-stationary time series with empirical illustrations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 389-413.
    3. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(3), pages 269-298, June.
    4. de Jong, Robert M., 2004. "Addendum To “Asymptotics For Nonlinear Transformations Of Integrated Time Series”," Econometric Theory, Cambridge University Press, vol. 20(3), pages 627-635, June.
    5. Joon Y. Park, 2004. "The Spatial Analysis of Time Series," Econometric Society 2004 North American Winter Meetings 595, Econometric Society.
    6. Peter C. B. Phillips, 2005. "Econometric Analysis of Fisher's Equation," American Journal of Economics and Sociology, Wiley Blackwell, vol. 64(1), pages 125-168, January.
    7. Berkes, István & Horváth, Lajos, 2006. "Convergence Of Integral Functionals Of Stochastic Processes," Econometric Theory, Cambridge University Press, vol. 22(2), pages 304-322, April.
    8. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
    9. Emmanuel Guerre, 2004. "Design-Adaptive Pointwise Nonparametric Regression Estimation for Recurrent Markov Time Series," Working Papers 2004-22, Center for Research in Economics and Statistics.
    10. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    11. Peter C.B. Phillips & Joon Y. Park, 1998. "Nonstationary Density Estimation and Kernel Autoregression," Cowles Foundation Discussion Papers 1181, Cowles Foundation for Research in Economics, Yale University.
    12. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    13. Wang, Qiying & Lin, Yan-Xia & Gulati, Chandra M., 2003. "Asymptotics For General Fractionally Integrated Processes With Applications To Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 19(1), pages 143-164, February.
    14. Hannan, E. J., 1979. "The central limit theorem for time series regression," Stochastic Processes and their Applications, Elsevier, vol. 9(3), pages 281-289, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, Peter C.B., 2009. "Local Limit Theory And Spurious Nonparametric Regression," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1466-1497, December.
    2. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
    3. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    4. Phillips, Peter C.B. & Jin, Sainan & Hu, Ling, 2007. "Nonstationary discrete choice: A corrigendum and addendum," Journal of Econometrics, Elsevier, vol. 141(2), pages 1115-1130, December.
    5. Chan, Nigel & Wang, Qiying, 2015. "Nonlinear regressions with nonstationary time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 182-195.
    6. Jiti Gao & Peter C.B. Phillips, 2011. "Semiparametric Estimation in Multivariate Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 17/11, Monash University, Department of Econometrics and Business Statistics.
    7. Hu, Ling & Phillips, Peter C. B., 2004. "Nonstationary discrete choice," Journal of Econometrics, Elsevier, vol. 120(1), pages 103-138, May.
    8. Gao, Jiti & Phillips, Peter C.B., 2013. "Semiparametric estimation in triangular system equations with nonstationarity," Journal of Econometrics, Elsevier, vol. 176(1), pages 59-79.
    9. Marmer, Vadim, 2008. "Nonlinearity, nonstationarity, and spurious forecasts," Journal of Econometrics, Elsevier, vol. 142(1), pages 1-27, January.
    10. Jia Chen & Jiti Gao & Degui Li & Zhengyan Lin, 2015. "Specification testing in nonstationary time series models," Econometrics Journal, Royal Economic Society, vol. 18(1), pages 117-136, February.
    11. Arai, Yoichi, 2016. "Testing For Linearity In Regressions With I(1) Processes," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 57(1), pages 111-138, June.
    12. Chaohua Dong & Jiti Gao, 2014. "Specification Testing in Structural Nonparametric Cointegration," Monash Econometrics and Business Statistics Working Papers 2/14, Monash University, Department of Econometrics and Business Statistics.
    13. Hu, Zhishui & Phillips, Peter C.B. & Wang, Qiying, 2021. "Nonlinear Cointegrating Power Function Regression With Endogeneity," Econometric Theory, Cambridge University Press, vol. 37(6), pages 1173-1213, December.
    14. Zongwu Cai & Bingyi Jing & Xinbing Kong & Zhi Liu, 2017. "Nonparametric regression with nearly integrated regressors under long‐run dependence," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 118-138, February.
    15. Lee, Jungick & de Jong, Robert M., 2008. "Exponential functionals of integrated processes," Economics Letters, Elsevier, vol. 100(2), pages 181-184, August.
    16. Federico Bandi & Peter C. B. Phillips, 2000. "Accelerated Asymptotics for Diffusion Model Estimation," Econometric Society World Congress 2000 Contributed Papers 1656, Econometric Society.
    17. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    18. Youngsoo Bae & Robert M. de Jong, 2007. "Money demand function estimation by nonlinear cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 767-793.
    19. Qiying Wang & Peter C. B. Phillips, 2022. "A General Limit Theory for Nonlinear Functionals of Nonstationary Time Series," Cowles Foundation Discussion Papers 2337, Cowles Foundation for Research in Economics, Yale University.
    20. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:25:y:2009:i:03:p:710-738_09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.