IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v232y2023i2p469-489.html
   My bibliography  Save this article

When bias contributes to variance: True limit theory in functional coefficient cointegrating regression

Author

Listed:
  • Phillips, Peter C.B.
  • Wang, Ying

Abstract

Limit distribution theory in the econometric literature for functional coefficient cointegrating regression is incorrect in important ways, influencing rates of convergence, distributional properties, and practical work. The correct limit theory reveals that components from both bias and variance terms contribute to variability in the asymptotics. The errors in the literature arise because random variability in the bias term has been neglected in earlier research. In stationary regression this random variability is of smaller order and can be ignored in asymptotic analysis but not without consequences for finite sample performance. Implications of the findings for rate efficient estimation are discussed. Simulations in the Online Supplement provide further evidence supporting the new limit theory in nonstationary functional coefficient regressions.

Suggested Citation

  • Phillips, Peter C.B. & Wang, Ying, 2023. "When bias contributes to variance: True limit theory in functional coefficient cointegrating regression," Journal of Econometrics, Elsevier, vol. 232(2), pages 469-489.
  • Handle: RePEc:eee:econom:v:232:y:2023:i:2:p:469-489
    DOI: 10.1016/j.jeconom.2021.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407621002190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sun, Yiguo & Cai, Zongwu & Li, Qi, 2016. "A Consistent Nonparametric Test On Semiparametric Smooth Coefficient Models With Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 32(4), pages 988-1022, August.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. Phillips, Peter C.B. & Wang, Ying, 2023. "When bias contributes to variance: True limit theory in functional coefficient cointegrating regression," Journal of Econometrics, Elsevier, vol. 232(2), pages 469-489.
    4. Phillips, Peter C. B. & Wang, Ying, 2023. "Limit Theory For Locally Flat Functional Coefficient Regression," Econometric Theory, Cambridge University Press, vol. 39(5), pages 900-949, October.
    5. Ibragimov, Rustam & Phillips, Peter C.B., 2008. "Regression Asymptotics Using Martingale Convergence Methods," Econometric Theory, Cambridge University Press, vol. 24(4), pages 888-947, August.
    6. Cai, Zongwu & Li, Qi & Park, Joon Y., 2009. "Functional-coefficient models for nonstationary time series data," Journal of Econometrics, Elsevier, vol. 148(2), pages 101-113, February.
    7. Ted Juhl, 2005. "Functional-coefficient models under unit root behaviour," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 197-213, July.
    8. Liang, Hanying & Phillips, Peter C.B. & Wang, Hanchao & Wang, Qiying, 2016. "Weak Convergence To Stochastic Integrals For Econometric Applications," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1349-1375, December.
    9. P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
    10. Sun, Yiguo & Hsiao, Cheng & Li, Qi, 2011. "Measuring correlations of integrated but not cointegrated variables: A semiparametric approach," Journal of Econometrics, Elsevier, vol. 164(2), pages 252-267, October.
    11. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    12. Yundong Tu & Ying Wang, 2019. "Functional Coefficient Cointegration Models Subject to Time–Varying Volatility with an Application to the Purchasing Power Parity," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(6), pages 1401-1423, December.
    13. Xiao, Zhijie, 2009. "Functional-coefficient cointegration models," Journal of Econometrics, Elsevier, vol. 152(2), pages 81-92, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiying Wang & Peter C. B. Phillips, 2022. "A General Limit Theory for Nonlinear Functionals of Nonstationary Time Series," Cowles Foundation Discussion Papers 2337, Cowles Foundation for Research in Economics, Yale University.
    2. Lin, Yingqian & Tu, Yundong, 2024. "Functional coefficient cointegration models with Box–Cox transformation," Economics Letters, Elsevier, vol. 234(C).
    3. Ying Wang & Peter C. B. Phillips & Yundong Tu, 2024. "Limit Theory and Inference in Non-cointegrated Functional Coefficient Regression," Cowles Foundation Discussion Papers 2399, Cowles Foundation for Research in Economics, Yale University.
    4. Phillips, Peter C.B. & Wang, Ying, 2022. "Functional coefficient panel modeling with communal smoothing covariates," Journal of Econometrics, Elsevier, vol. 227(2), pages 371-407.
    5. Phillips, Peter C.B. & Wang, Ying, 2023. "When bias contributes to variance: True limit theory in functional coefficient cointegrating regression," Journal of Econometrics, Elsevier, vol. 232(2), pages 469-489.
    6. Qiying Wang & Peter C. B. Phillips & Ying Wang, 2023. "New asymptotics applied to functional coefficient regression and climate sensitivity analysis," Cowles Foundation Discussion Papers 2365, Cowles Foundation for Research in Economics, Yale University.
    7. Ying Wang & Peter C. B. Phillips, 2024. "Limit Theory of Local Polynomial Estimation in Functional Coefficient Regression," Cowles Foundation Discussion Papers 2398, Cowles Foundation for Research in Economics, Yale University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Wang & Peter C. B. Phillips & Yundong Tu, 2024. "Limit Theory and Inference in Non-cointegrated Functional Coefficient Regression," Cowles Foundation Discussion Papers 2399, Cowles Foundation for Research in Economics, Yale University.
    2. Tu, Yundong & Wang, Ying, 2022. "Spurious functional-coefficient regression models and robust inference with marginal integration," Journal of Econometrics, Elsevier, vol. 229(2), pages 396-421.
    3. Gan, Li & Hsiao, Cheng & Xu, Shu, 2014. "Model specification test with correlated but not cointegrated variables," Journal of Econometrics, Elsevier, vol. 178(P1), pages 80-85.
    4. Ying Wang & Peter C. B. Phillips, 2024. "Limit Theory of Local Polynomial Estimation in Functional Coefficient Regression," Cowles Foundation Discussion Papers 2398, Cowles Foundation for Research in Economics, Yale University.
    5. repec:wyi:journl:002112 is not listed on IDEAS
    6. Sun, Yiguo & Hsiao, Cheng & Li, Qi, 2011. "Measuring correlations of integrated but not cointegrated variables: A semiparametric approach," Journal of Econometrics, Elsevier, vol. 164(2), pages 252-267, October.
    7. Qiying Wang & Peter C. B. Phillips & Ying Wang, 2023. "New asymptotics applied to functional coefficient regression and climate sensitivity analysis," Cowles Foundation Discussion Papers 2365, Cowles Foundation for Research in Economics, Yale University.
    8. Haiqi Li Author-Name-First: Haiqi & Jing Zhang & Chaowen Zheng, 2023. "Estimating and Testing for Functional Coefficient Quantile Cointegrating Regression," Economics Discussion Papers em-dp2023-07, Department of Economics, University of Reading.
    9. Zongwu Cai & Bingyi Jing & Xinbing Kong & Zhi Liu, 2017. "Nonparametric regression with nearly integrated regressors under long‐run dependence," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 118-138, February.
    10. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    11. Banerjee Anurag & Pitarakis Jean-Yves, 2014. "Functional cointegration: definition and nonparametric estimation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 507-520, December.
    12. Chuanhua Wei & Lijie Wan, 2015. "Efficient Estimation in Heteroscedastic Varying Coefficient Models," Econometrics, MDPI, vol. 3(3), pages 1-7, July.
    13. Yuying Sun & Shaoxin Hong & Zongwu Cai, 2023. "Optimal Local Model Averaging for Divergent-Dimensional Functional-Coefficient Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202309, University of Kansas, Department of Economics, revised Sep 2023.
    14. Zongwu Cai & Qi Li, 2013. "Some Recent Develop- ments on Nonparametric Econometrics," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    15. Li, Kunpeng & Li, Weiming, 2013. "Estimation of varying coefficient models with time trend and integrated regressors," Economics Letters, Elsevier, vol. 119(1), pages 89-93.
    16. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    17. Tu, Yundong & Liang, Han-Ying & Wang, Qiying, 2022. "Nonparametric inference for quantile cointegrations with stationary covariates," Journal of Econometrics, Elsevier, vol. 230(2), pages 453-482.
    18. Liang, Zhongwen & Li, Qi, 2012. "Functional coefficient regression models with time trend," Journal of Econometrics, Elsevier, vol. 170(1), pages 15-31.
    19. repec:wyi:journl:002195 is not listed on IDEAS
    20. Gu, Jingping & Liang, Zhongwen, 2014. "Testing cointegration relationship in a semiparametric varying coefficient model," Journal of Econometrics, Elsevier, vol. 178(P1), pages 57-70.
    21. Stypka, Oliver & Wagner, Martin & Grabarczyk, Peter & Kawka, Rafael, 2017. "The Asymptotic Validity of "Standard" Fully Modified OLS Estimation and Inference in Cointegrating Polynomial Regressions," Economics Series 333, Institute for Advanced Studies.
    22. Lin, Yingqian & Tu, Yundong & Yao, Qiwei, 2020. "Estimation for double-nonlinear cointegration," Journal of Econometrics, Elsevier, vol. 216(1), pages 175-191.

    More about this item

    Keywords

    Bandwidth selection; Bias variability; Functional coefficient cointegration; Kernel regression; Nonstationarity;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:232:y:2023:i:2:p:469-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.