IDEAS home Printed from https://ideas.repec.org/a/csb/stintr/v16y2015i4p611-630.html
   My bibliography  Save this article

SAE education challenges to academics and NSI

Author

Listed:
  • Elżbieta Gołata

Abstract

The aim of the paper is to present some experiences in teaching Small Area Estimation (SAE). SAE education experiences and challenges are analysed from the academic side and from the NSI side. An attempt was undertaken to discuss SAE issues in a wider perspective of teaching statistics. In particular, the topics refer to Polish conditions, but they are presented against the background of selected international experiences and practices. Information comes from a special inquiry - a survey conducted among employees of statistical offices and academics from universities involved in SAE research. A further issue is inclusion of SAE in the EMOS project (European Master in Official Statistics). The survey is extended with information collected by monitoring of trainings and projects organized by the leading centres dealing with SAE. The results obtained are related to a similar survey within Eurostat project: ESSnet on Small Area Estimation, which was conducted in 2010. The study includes interest in learning and the need to implement SAE methodology, a range of subjects taught as well as a range of applications, forms of training, type of courses, software used and teaching methods. In particular, it intends to answer how strong the interest in small area estimation is, what the demand for practical and theoretical knowledge in the field is and what the recommendations for universities and statistical institutes are.

Suggested Citation

  • Elżbieta Gołata, 2015. "SAE education challenges to academics and NSI," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 611-630, December.
  • Handle: RePEc:csb:stintr:v:16:y:2015:i:4:p:611-630
    as

    Download full text from publisher

    File URL: http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v16_2015_i4_n10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ray Chambers & Hukum Chandra & Nicola Salvati & Nikos Tzavidis, 2014. "Outlier robust small area estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 47-69, January.
    2. Datta, Gauri S. & Hall, Peter & Mandal, Abhyuday, 2011. "Model Selection by Testing for the Presence of Small-Area Effects, and Application to Area-Level Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 362-374.
    3. Li‐Chun Zhang, 2012. "Topics of statistical theory for register‐based statistics and data integration," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(1), pages 41-63, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elżbieta Gołata, 2015. "Sae Education Challenges To Academics And Nsi," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 611-630, December.
    2. Gołata Elżbieta, 2015. "Sae Education Challenges to Academics and NSI," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 611-630, December.
    3. Chakraborty Adrijo & Datta Gauri Sankar & Mandal Abhyuday, 2016. "A Two-Component Normal Mixture Alternative to the Fay-Herriot Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 67-90, March.
    4. repec:csb:stintr:v:17:y:2016:i:1:p:67-90 is not listed on IDEAS
    5. Tzavidis, Nikos & Zhang, Li-Chun & Luna Hernandez, Angela & Schmid, Timo & Rojas-Perilla, Natalia, 2016. "From start to finish: A framework for the production of small area official statistics," Discussion Papers 2016/13, Free University Berlin, School of Business & Economics.
    6. Nikos Tzavidis & Li‐Chun Zhang & Danny Pfeffermann & Partha Lahiri, 2017. "Preface to the papers on ‘Small area estimation’," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1035-1037, October.
    7. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.
    8. Adrijo Chakraborty & Gauri Sankar Datta & Abhyuday Mandal, 2016. "A Two-Component Normal Mixture Alternative To The Fay-Herriot Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 67-90, March.
    9. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    10. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    11. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    12. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    13. G. Bertarelli & R. Chambers & N. Salvati, 2021. "Outlier robust small domain estimation via bias correction and robust bootstrapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 331-357, March.
    14. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    15. Domingo Morales & María del Mar Rueda & Dolores Esteban, 2018. "Model-Assisted Estimation of Small Area Poverty Measures: An Application within the Valencia Region in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(3), pages 873-900, August.
    16. Bakker Bart F.M. & Heijden Peter G.M. van der & Scholtus Sander, 2015. "Preface," Journal of Official Statistics, Sciendo, vol. 31(3), pages 349-355, September.
    17. Fulvia Cerroni & Grazia Di Bella & Lorena Galiè, 2014. "Evaluating administrative data quality as inputof the statistical production process," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 16(1-2), pages 117-146.
    18. Fabrizi, Enrico & Salvati, Nicola & Trivisano, Carlo, 2020. "Robust Bayesian small area estimation based on quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    19. Fabrizio Antolini & Laura Grassini, 2020. "Methodological problems in the economic measurement of tourism: the need for new sources of information," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(5), pages 1769-1780, December.
    20. Stefano Marchetti & Maciej Beręsewicz & Nicola Salvati & Marcin Szymkowiak & Łukasz Wawrowski, 2018. "The use of a three‐level M‐quantile model to map poverty at local administrative unit 1 in Poland," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1077-1104, October.
    21. Elżbieta Gołata, 2016. "Shift In Methodology And Population Census Quality," Statistics in Transition New Series, Polish Statistical Association, vol. 17(4), pages 631-658, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csb:stintr:v:16:y:2015:i:4:p:611-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beata Witek (email available below). General contact details of provider: https://edirc.repec.org/data/gusgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.