IDEAS home Printed from https://ideas.repec.org/a/ces/ifosdt/v72y2019i05p28-31.html
   My bibliography  Save this article

Rezessionsrisiko der deutschen Wirtschaft deutlich erhöht

Author

Listed:
  • Kai Carstensen
  • Magnus Reif
  • Maik Wolters

Abstract

Ist die konjunkturelle Abkühlung der deutschen Wirtschaft in der zweiten Jahreshälfte 2018 ein Hinweis auf eine kurzfristige konjunkturelle Schwächephase, oder ist eine länger anhaltende Rezession zu erwarten? Kai Carstensen, Universität zu Kiel, Magnus Reif, ifo Institut, und Maik Wolters, Universität Jena, schätzen das aktuelle Rezessionsrisiko mit Hilfe eines dynamischen, nichtlinearen Faktormodells. Ihre Ergebnisse legen nahe, dass die Gefahr einer Rezession zurzeit deutlich erhöht ist und auch in den kommenden Quartalen mit einer konjunkturellen Schwächephase zu rechnen ist. Insbesondere haben die seit einiger Zeit abwärts gerichteten Befragungsdaten deuten darauf hin.

Suggested Citation

  • Kai Carstensen & Magnus Reif & Maik Wolters, 2019. "Rezessionsrisiko der deutschen Wirtschaft deutlich erhöht," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 72(05), pages 28-31, March.
  • Handle: RePEc:ces:ifosdt:v:72:y:2019:i:05:p:28-31
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/sd-2019-05-carstensen-reif-wolters-rezessionsgefahr-2019-03-07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    2. Timo Wollmershäuser & Florian Eckert & Marcell Göttert & Christian Grimme & Carla Krolage & Stefan Lautenbacher & Robert Lehmann & Sebastian Link & Heiner Mikosch & Stefan Neuwirth & Wolfgang Nierhaus, 2019. "ifo Konjunkturprognose Winter 2019: Deutsche Konjunktur stabilisiert sich," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 72(24), pages 27-89, December.
    3. Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
    4. Timo Wollmershäuser & Marcell Göttert & Christian Grimme & Carla Krolage & Stefan Lautenbacher & Robert Lehmann & Sebastian Link & Wolfgang Nierhaus & Ann-Christin Rathje & Magnus Reif & Radek Šauer &, 2018. "ifo Konjunkturprognose Winter 2018: Deutsche Konjunktur kühlt sich ab," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 71(24), pages 28-82, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    2. Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
    3. Wolfgang Nierhaus, 2019. "Wirtschaftskonjunktur 2018: Prognose und Wirklichkeit," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 72(03), pages 22-29, February.
    4. Born, Benjamin & Enders, Zeno & Menkhoff, Manuel & Müller, Gernot & Niemann, Knut, 2022. "Firm Expectations and News: Micro v Macro," CEPR Discussion Papers 17768, C.E.P.R. Discussion Papers.
    5. Agnieszka Gehringer & Thomas Mayer, 2021. "Measuring the Business Cycle Chronology with a Novel Business Cycle Indicator for Germany," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(1), pages 71-89, April.
    6. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    7. Ademmer, Martin & Boysen-Hogrefe, Jens & Fiedler, Salomon & Groll, Dominik & Hauber, Philipp & Jannsen, Nils & Kooths, Stefan & Potjagailo, Galina, 2018. "Deutsche Konjunktur im Frühjahr 2018 - Deutsche Wirtschaft näher am Limit [German Economy Spring 2018 - German economy closer to its limit]," Kieler Konjunkturberichte 41, Kiel Institute for the World Economy (IfW Kiel).
    8. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
    9. Robert Lehmann & Magnus Reif, 2021. "Predicting the German Economy: Headline Survey Indices Under Test," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 215-232, November.
    10. Grimme, Christian & Lehmann, Robert & Noeller, Marvin, 2021. "Forecasting imports with information from abroad," Economic Modelling, Elsevier, vol. 98(C), pages 109-117.
    11. Christian Grimme & Robert Lehmann & Marvin Nöller, 2018. "Das ifo Importklima – ein erster Frühindikator für die Prognose der deutschen Importe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 71(12), pages 27-32, June.
    12. Magnus Reif, 2022. "Time‐Varying Dynamics of the German Business Cycle: A Comprehensive Investigation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(1), pages 80-102, February.
    13. Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    14. Sarfraz Hussain & Mohammad Enamul Hoque & Perengki Susanto & Waqas Ahmad Watto & Samina Haque & Pradeep Mishra, 2022. "The Quality of Fair Revaluation of Fixed Assets and Additional Calculations Aimed at Facilitating Prospective Investors’ Decisions," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    15. Proaño, Christian R. & Tarassow, Artur, 2018. "Evaluating the predicting power of ordered probit models for multiple business cycle phases in the U.S. and Japan," Journal of the Japanese and International Economies, Elsevier, vol. 50(C), pages 60-71.
    16. Xie, Pinjie & Shu, Yalin & Sun, Feihu & Pan, Xianyou, 2024. "Enhancing the accuracy of China's electricity consumption forecasting through economic cycle division: An MSAR-OPLS scenario analysis," Energy, Elsevier, vol. 293(C).
    17. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
    18. Ademmer, Martin & Boysen-Hogrefe, Jens & Fiedler, Salomon & Groll, Dominik & Hauber, Philipp & Jannsen, Nils & Kooths, Stefan & Potjagailo, Galina & Wolters, Maik H., 2018. "Deutsche Konjunktur im Sommer 2018 - Deutsche Wirtschaft: Luftloch im konjunkturellen Höhenflug [German Economy Summer 2018 - German economy: Temporary slowdown, boom not over yet]," Kieler Konjunkturberichte 44, Kiel Institute for the World Economy (IfW Kiel).
    19. Christian Glocker & Philipp Wegmueller, 2020. "Business cycle dating and forecasting with real-time Swiss GDP data," Empirical Economics, Springer, vol. 58(1), pages 73-105, January.
    20. Kai Carstensen & Felix Kießner & Thies Rossian, 2023. "Estimation of the TFP Gap for the Largest Five EMU Countries," CESifo Working Paper Series 10245, CESifo.

    More about this item

    Keywords

    Konjunktur; Wirtschaftslage; Prognose; Deutschland; Rezession;
    All these keywords.

    JEL classification:

    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifosdt:v:72:y:2019:i:05:p:28-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.