IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_8145.html
   My bibliography  Save this paper

Tracking and Predicting the German Economy: ifo vs. PMI

Author

Listed:
  • Robert Lehmann
  • Magnus Reif

Abstract

This analysis investigates the predictive power of the most important leading indicators for the German economy, which are provided by the ifo Institute and IHS Markit. We conduct an out-of-sample, real-time forecast experiment for growth of gross domestic product and growth of gross value added in both the manufacturing and the service sector. We find that both survey providers produce valuable leading indicators to predict the current quarter of German GDP growth. Regarding forecasts for the next quarter, the ifo indicators are slightly better than the IHS Markit headline index. For the manufacturing sector, series provided by ifo are clearly superior to those of IHS Markit. For the service sector, the ifo indicators produce better nowcasts, whereas the indicators by IHS are more valuable for one-quarter-ahead predictions.

Suggested Citation

  • Robert Lehmann & Magnus Reif, 2020. "Tracking and Predicting the German Economy: ifo vs. PMI," CESifo Working Paper Series 8145, CESifo.
  • Handle: RePEc:ces:ceswps:_8145
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp8145.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    2. Stefan Sauer & Klaus Wohlrabe, 2018. "The New ifo Business Climate Index for Germany," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 19(02), pages 59-64, July.
    3. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    4. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    5. Gabe J. Bondt, 2019. "A PMI-Based Real GDP Tracker for the Euro Area," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 15(2), pages 147-170, December.
    6. Strohsal, Till & Wolf, Elias, 2020. "Data revisions to German national accounts: Are initial releases good nowcasts?," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1252-1259.
    7. Kholodilin Konstantin Arkadievich & Siliverstovs Boriss, 2006. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 226(3), pages 234-259, June.
    8. Raïsa Basselier & David Antonio Liedo & Geert Langenus, 2018. "Nowcasting Real Economic Activity in the Euro Area: Assessing the Impact of Qualitative Surveys," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 1-46, April.
    9. Pinkwart, Nicolas, 2018. "Short-term forecasting economic activity in Germany: A supply and demand side system of bridge equations," Discussion Papers 36/2018, Deutsche Bundesbank.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Henzel Steffen R. & Lehmann Robert & Wohlrabe Klaus, 2015. "Nowcasting Regional GDP: The Case of the Free State of Saxony," Review of Economics, De Gruyter, vol. 66(1), pages 71-98, April.
    12. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    13. Raïsa Basselier & David de Antonio Liedo & Geert Langenus,, 2017. "Nowcasting real economic activity in the euro area : Assessing the impact of qualitative surveys," Working Paper Research 331, National Bank of Belgium.
    14. Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
    15. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    16. repec:ces:ifofor:v::y:2018:i::p: is not listed on IDEAS
    17. John B. Broughton & Bento J. Lobo, 2018. "Herding and anchoring in macroeconomic forecasts: the case of the PMI," Empirical Economics, Springer, vol. 55(3), pages 1337-1355, November.
    18. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
    19. Klaus Wohlrabe & Timo Wollmershäuser, 2017. "Über die richtige Interpretation des ifo Geschäftsklimas als konjunktureller Frühindikator," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 70(15), pages 42-46, August.
    20. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liudmila Kitrar & Tamara Lipkind, 2021. "Development Of Composite Indicators Of Cyclical Response In Business Surveys Considering The Specifics Of The ‘Covid-19 Economy’," HSE Working papers WP BRP 121/STI/2021, National Research University Higher School of Economics.
    2. Eraslan, Sercan & Reif, Magnus, 2023. "A latent weekly GDP indicator for Germany," Technical Papers 08/2023, Deutsche Bundesbank.
    3. Robert Lehmann & Sascha Möhrle, 2024. "Forecasting regional industrial production with novel high‐frequency electricity consumption data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1918-1935, September.
    4. Lehmann, Robert & Wikman, Ida, 2022. "Quarterly GDP Estimates for the German States," MPRA Paper 112642, University Library of Munich, Germany.
    5. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
    2. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
    3. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    4. Robert Lehmann & Sascha Möhrle, 2024. "Forecasting regional industrial production with novel high‐frequency electricity consumption data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1918-1935, September.
    5. Grimme, Christian & Lehmann, Robert & Noeller, Marvin, 2021. "Forecasting imports with information from abroad," Economic Modelling, Elsevier, vol. 98(C), pages 109-117.
    6. Michael Berlemann & Vera Jahn & Robert Lehmann, 2022. "Is the German Mittelstand more resistant to crises?," Small Business Economics, Springer, vol. 59(3), pages 1169-1195, October.
    7. Lehmann, Robert & Wikman, Ida, 2022. "Quarterly GDP Estimates for the German States," MPRA Paper 112642, University Library of Munich, Germany.
    8. Born, Benjamin & Enders, Zeno & Menkhoff, Manuel & Müller, Gernot & Niemann, Knut, 2022. "Firm Expectations and News: Micro v Macro," CEPR Discussion Papers 17768, C.E.P.R. Discussion Papers.
    9. Christian Grimme & Robert Lehmann & Marvin Nöller, 2018. "Das ifo Importklima – ein erster Frühindikator für die Prognose der deutschen Importe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 71(12), pages 27-32, June.
    10. Robert Lehmann, 2024. "A real-time regional accounts database for Germany with applications to GDP revisions and nowcasting," Empirical Economics, Springer, vol. 67(2), pages 817-838, August.
    11. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
    12. Christian Glocker & Philipp Wegmueller, 2020. "Business cycle dating and forecasting with real-time Swiss GDP data," Empirical Economics, Springer, vol. 58(1), pages 73-105, January.
    13. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    14. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    15. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    16. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    17. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    18. Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
    19. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    20. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.

    More about this item

    Keywords

    forecasting nowcasting; survey data; ifo Business Climate; PMI;
    All these keywords.

    JEL classification:

    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_8145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.