IDEAS home Printed from https://ideas.repec.org/a/caa/jnlswr/v16y2021i1id31-2020-swr.html
   My bibliography  Save this article

Comparison of the physical properties of soils belonging to different reference soil groups

Author

Listed:
  • Jan Vopravil

    (Research Institute for Soil and Water Conservation, Prague-Zbraslav, Czech Republic
    Department of Land Use and Improvement, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Pavel Formánek

    (Research Institute for Soil and Water Conservation, Prague-Zbraslav, Czech Republic)

  • Tomáš Khel

    (Research Institute for Soil and Water Conservation, Prague-Zbraslav, Czech Republic)

Abstract

Soil properties can be influenced by long-term agricultural management practices as described in pedological literature. In this study, selected physical properties (particle density and bulk density, total porosity, maximum capillary water capacity, minimum air capacity, field capacity, permanent wilting point and available water capacity) of topsoils from different reference soil groups (Cambisols, Luvisols, Fluvisols, Chernozems and Phaeozems, Leptosols, Stagnosols and Gleysols) were sampled and analysed in the years 2016-2017. The topsoil samples were taken from points of so-called S (specific) soil pits to be sampled from the General Soil Survey of Agricultural Soils (GSSAS) which was accomplished in the years 1961-1970. In addition, some of the properties were also compared with those measured during the GSSAS. Recognising the properties, only the particle density, the maximum capillary water capacity, the permanent wilting point and the available water capacity of the topsoil of the individual soil groups were statistically significantly (P < 0.05) different. A comparison of the physical properties with those analysed after more than 40 years was performed, the bulk density increased and the total porosity decreased in the topsoil of the major part of the studied soil groups.

Suggested Citation

  • Jan Vopravil & Pavel Formánek & Tomáš Khel, 2021. "Comparison of the physical properties of soils belonging to different reference soil groups," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(1), pages 29-38.
  • Handle: RePEc:caa:jnlswr:v:16:y:2021:i:1:id:31-2020-swr
    DOI: 10.17221/31/2020-SWR
    as

    Download full text from publisher

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/31/2020-SWR.html
    Download Restriction: free of charge

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/31/2020-SWR.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/31/2020-SWR?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. Suwara & K. Pawlak-Zaręba & D. Gozdowski & A. Perzanowska, 2016. "Physical properties of soil after 54 years of long-term fertilization and crop rotation," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(9), pages 389-394.
    2. Theodore Danso Marfo & Rahul Datta & Valerie Vranová & Adam Ekielski, 2019. "Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition," Agriculture, MDPI, vol. 9(10), pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rakesh S & Deepranjan Sarkar & Abhas Kumar Sinha & Shikha & Prabir Mukhopadhyay & Subhan Danish & Shah Fahad & Rahul Datta, 2021. "Carbon Mineralization Rates and Kinetics of Surface-Applied and Incorporated Rice and Maize Residues in Entisol and Inceptisol Soil Types," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    2. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    3. Fazli Wahid & Shah Fahad & Subhan Danish & Muhammad Adnan & Zhen Yue & Shah Saud & Manzer H. Siddiqui & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils," Agriculture, MDPI, vol. 10(8), pages 1-14, August.
    4. Diding Suhandy & Meinilwita Yulia, 2021. "Classification of Lampung robusta Specialty Coffee According to Differences in Cherry Processing Methods Using UV Spectroscopy and Chemometrics," Agriculture, MDPI, vol. 11(2), pages 1-11, February.
    5. Ram Swaroop Meena & Sandeep Kumar & Rahul Datta & Rattan Lal & Vinod Vijayakumar & Martin Brtnicky & Mahaveer Prasad Sharma & Gulab Singh Yadav & Manoj Kumar Jhariya & Chetan Kumar Jangir & Shamina Im, 2020. "Impact of Agrochemicals on Soil Microbiota and Management: A Review," Land, MDPI, vol. 9(2), pages 1-21, January.
    6. Jiri Holatko & Tereza Hammerschmiedt & Rahul Datta & Tivadar Baltazar & Antonin Kintl & Oldrich Latal & Vaclav Pecina & Petr Sarec & Petr Novak & Ludmila Balakova & Subhan Danish & Muhammad Zafar-ul-H, 2020. "Humic Acid Mitigates the Negative Effects of High Rates of Biochar Application on Microbial Activity," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    7. Edyta Hewelke & Lilla Mielnik & Jerzy Weber & Aneta Perzanowska & Elżbieta Jamroz & Dariusz Gozdowski & Paweł Szacki, 2024. "Chemical and Physical Aspects of Soil Health Resulting from Long-Term No-Till Management," Sustainability, MDPI, vol. 16(22), pages 1-16, November.
    8. Zongmei Li & Lanhui Li & Yang Wang & Wang Man & Wenfeng Liu & Qin Nie, 2022. "Spatial Change of the Farming–Pastoral Ecotone in Northern China from 1985 to 2021," Land, MDPI, vol. 11(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:16:y:2021:i:1:id:31-2020-swr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.