IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v62y2016i9id151-2016-pse.html
   My bibliography  Save this article

Physical properties of soil after 54 years of long-term fertilization and crop rotation

Author

Listed:
  • I. Suwara

    (Department of Agronomy, Warsaw University of Life Sciences, Warsaw, Poland)

  • K. Pawlak-Zaręba

    (Department of Agronomy, Warsaw University of Life Sciences, Warsaw, Poland)

  • D. Gozdowski

    (Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences, Warsaw, Poland)

  • A. Perzanowska

    (Department of Agronomy, Warsaw University of Life Sciences, Warsaw, Poland)

Abstract

The investigations were carried out in two permanent fertilization experiments established in 1955 on the black earth in Chylice, near Warsaw, Mazovian province, Poland. The aim of this study was to compare the impact of long-term mineral (NPK); organic (FM) and mixed mineral-organic (1/2 NPK + 1/2 FM) fertilization in two crop rotations on some soil physical properties, including the soil structure, dry bulk density, soil moisture and field water capacity. The fertilization systems and using red clover in crop rotation significantly influenced soil structure and water conditions. Farmyard manure (FM, 1/2 NPK + 1/2 FM) application in both crop rotations increased mean weight diameter of water-resistant aggregate, water aggregate stability and field water capacity in comparison to unfertilized and mineral treatments. The dry soil bulk density was lower in soil fertilized with farmyard manure than in soil unfertilized. The most favourable effect on physical soil properties exerted farmyard manure (FM, 1/2 NPK + 1/2 FM) in crop rotation with red clover. A positive correlation was also proved between the soil structure parameters and field water capacity.

Suggested Citation

  • I. Suwara & K. Pawlak-Zaręba & D. Gozdowski & A. Perzanowska, 2016. "Physical properties of soil after 54 years of long-term fertilization and crop rotation," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(9), pages 389-394.
  • Handle: RePEc:caa:jnlpse:v:62:y:2016:i:9:id:151-2016-pse
    DOI: 10.17221/151/2016-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/151/2016-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/151/2016-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/151/2016-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R.W. Neugschwandtner & P. Liebhard & H.-P. Kaul & H. Wagentristl, 2014. "Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(2), pages 57-62.
    2. G. Verma & R.P. Sharma & S.P. Sharma & S.K. Subehia & S. Shambhavi, 2012. "Changes in soil fertility status of maize-wheat system due to long-term use of chemical fertilizers and amendments in an alfisol," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(12), pages 529-533.
    3. L. Talgre & E. Lauringson & H. Roostalu & A. Astover & A. Makke, 2012. "Green manure as a nutrient source for succeeding crops," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(6), pages 275-281.
    4. F. Wang & Y.A. Tong & J.S. Zhang & P.C. Gao & J.N. Coffie, 2013. "Effects of various organic materials on soil aggregate stability and soil microbiological properties on the Loess Plateau of China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(4), pages 162-168.
    5. S. Seremesic & D. Milosev & I. Djalovic & T. Zeremski & J. Ninkov, 2011. "Management of soil organic carbon in maintaining soil productivity and yield stability of winter wheat," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(5), pages 216-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edyta Hewelke & Lilla Mielnik & Jerzy Weber & Aneta Perzanowska & Elżbieta Jamroz & Dariusz Gozdowski & Paweł Szacki, 2024. "Chemical and Physical Aspects of Soil Health Resulting from Long-Term No-Till Management," Sustainability, MDPI, vol. 16(22), pages 1-16, November.
    2. Jan Vopravil & Pavel Formánek & Tomáš Khel, 2021. "Comparison of the physical properties of soils belonging to different reference soil groups," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(1), pages 29-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Stehlíková & M. Madaras & J. Lipavský & T. Šimon, 2016. "Study on some soil quality changes obtained from long-term experiments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(2), pages 74-79.
    2. Vladimír ŠIMANSKÝ & Martin LUKÁČ, 2018. "Soil structure after 18 years of long-term different tillage systems and fertilisation in Haplic Luvisol," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 13(3), pages 140-149.
    3. Markéta Mayerová & Tomáš Šimon & Martin Stehlík & Mikuláš Madaras, 2023. "Improving the stability of soil aggregates using soil additives and revegetation by grassland," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(6), pages 282-290.
    4. J. Horáček & E. Strosser & V. Čechová, 2014. "Carbon fraction concentrations in a haplic Luvisol as affected by tillage," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(6), pages 262-266.
    5. M. Shaaban & M. Abid & R.A.I. Abou-Shanab, 2013. "Amelioration of salt affected soils in rice paddy system by application of organic and inorganic amendments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(5), pages 227-233.
    6. W. Li & K.W. Pan & N. Wu & J.C. Wang & Y.J. Wang & L. Zhang, 2014. "Effect of litter type on soil microbial parameters and dissolved organic carbon in a laboratory microcosm experiment," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(4), pages 170-176.
    7. Yan, Hongqiang & Rejesus, Roderick M. & Chen, Le & Aglasan, Serkan, 2024. "The Impact of Soil Erosion on Mean Yields and Yield Risk," 2024 Annual Meeting, July 28-30, New Orleans, LA 343580, Agricultural and Applied Economics Association.
    8. Soni Isnaini & Maryati & A. Arivin Rivaie, 2023. "Comparison of potassium quantity-intensity relationships in tropical paddy soil under tillage and no-tillage systems after fifteen growing seasons," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(1), pages 1-9.
    9. J.J. Wang & C.X. Hu & J. Bai & C.M. Gong, 2015. "Carbon sequestration of mature black locust stands on the Loess Plateau, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(3), pages 116-121.
    10. M. Kulhánek & J. Balík & J. Černý & O. Sedlář & F. Vašák, 2016. "Evaluating of soil sulfur forms changes under different fertilizing systems during long-term field experiments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(9), pages 408-415.
    11. Xue Li & Qiuxiang Wen & Shiyu Zhang & Na Li & Jinfeng Yang & Xiaori Han, 2020. "Long-term rotation fertilisation has differential effects on soil phosphorus," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(11), pages 543-551.
    12. R.W. Neugschwandtner & H.-P. Kaul & P. Liebhard & H. Wagentristl, 2015. "Winter wheat yields in a long-term tillage experiment under Pannonian climate conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(4), pages 145-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:62:y:2016:i:9:id:151-2016-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.