IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v65y2019i9id249-2019-pse.html
   My bibliography  Save this article

Long-term effect of soil conservation tillage on soil water content, penetration resistance, crumb ratio and crusted area

Author

Listed:
  • Igor Bogunović

    (Department of General Agronomy, Faculty of Agronomy, University of Zagreb, Zagreb, Croatia)

  • Péter Gergő Kovács

    (Institute of Crop Production, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary)

  • Igor Ðekemati

    (Institute of Crop Production, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary)

  • Ivica Kisić

    (Department of General Agronomy, Faculty of Agronomy, University of Zagreb, Zagreb, Croatia)

  • István Balla

    (Institute of Crop Production, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary)

  • Márta Birkás

    (Institute of Crop Production, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary)

Abstract

Conservation tillage harmonizes soil protection with demands of the crop, soil and climate. The continuous conservation tillage improves soil properties and modifies impact of weather extremes. The aim of the paper was to investigate the changes in four soil physical states affected by soil conservation tillage and to evaluate soil water content in a critical period. The study was carried out on Chernozems applying six tillage treatments, that are loosening, ploughing, tine tillage (a deeper, and a shallower), disk tillage and direct drilling. The investigation suggested that soil conservation was the major solution resulting in the balanced water content (SWC) and penetration resistance values in both treatments under peculiar weather conditions. However, the crumb ratio and the crusted area resulted in significant differences between the treatments, presumably due to the level of surface preservation. Soil water content differed significantly between months, with higher contents in spring and lower values in the end of summer. The higher SWC expected at the beginning of the growing season was reliably fulfilled, but the SWC level for workabilty differed from the optimum.

Suggested Citation

  • Igor Bogunović & Péter Gergő Kovács & Igor Ðekemati & Ivica Kisić & István Balla & Márta Birkás, 2019. "Long-term effect of soil conservation tillage on soil water content, penetration resistance, crumb ratio and crusted area," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(9), pages 442-448.
  • Handle: RePEc:caa:jnlpse:v:65:y:2019:i:9:id:249-2019-pse
    DOI: 10.17221/249/2019-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/249/2019-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/249/2019-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/249/2019-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anil ÇAY, 2018. "Impact of different tillage management on soil and grain quality in the Anatolian paddy rice production," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(7), pages 303-309.
    2. Ivica KISIC & Igor BOGUNOVIC & Zeljka ZGORELEC & Darija BILANDZIJA, 2018. "Effects of soil erosion by water under different tillage treatments on distribution of soil chemical parameters," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 13(1), pages 36-43.
    3. Mateja MURŠEC & Jean LEVEQUE & Remi CHAUSSOD & Pierre CURMI, 2018. "The impact of drip irrigation on soil quality in sloping orchards developed on marl - A case study," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(1), pages 20-25.
    4. J.Y. Shen & D.D. Zhao & H.F. Han & X.B. Zhou & Q.Q. Li, 2012. "Effects of straw mulching on water consumption characteristics and yield of different types of summer maize plants," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(4), pages 161-166.
    5. Shaobo Wang & Liangliang Guo & Pengchong Zhou & Xuejie Wang & Ying Shen & Huifang Han & Tangyuan Ning & Kun Han, 2019. "Effect of subsoiling depth on soil physical properties and summer maize (Zea mays L.) yield," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(3), pages 131-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Kalmár & L. Bottlik & I. Kisić & C. Gyuricza & M. Birkás, 2013. "Soil protecting effect of the surface cover in extreme summer periods," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(9), pages 404-409.
    2. Lei Zhang & Xiaowei Wang & Jianneng Chen & Haiyang Wang & Yonggan Cao, 2024. "Analysis and Optimization of Low-Resistance Animal Bionic Subsoiling Shovel Based on EDEM," Agriculture, MDPI, vol. 14(11), pages 1-21, November.
    3. Shuwei Zhu & Tianping Gao & Zhen Liu & Tangyuan Ning, 2022. "Rotary and subsoiling tillage rotations influence soil carbon and nitrogen sequestration and crop yield," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(2), pages 89-97.
    4. Amin, M.G. Mostofa & Mahbub, S.M. Mubtasim & Hasan, Md. Moudud & Pervin, Wafa & Sharmin, Jinat & Hossain, Md. Delwar, 2023. "Plant–water relations in subtropical maize fields under mulching and organic fertilization," Agricultural Water Management, Elsevier, vol. 286(C).
    5. Soni Isnaini & Maryati & A. Arivin Rivaie, 2023. "Comparison of potassium quantity-intensity relationships in tropical paddy soil under tillage and no-tillage systems after fifteen growing seasons," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(1), pages 1-9.
    6. C. Gyuricza & V. Smutný & A. Percze & B. Pósa & M. Birkás, 2015. "Soil condition threats in two seasons of extreme weather conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(4), pages 151-157.
    7. Jianning He & Zhenwen Yu & Yu Shi, 2019. "Effects of strip rotary tillage with subsoiling on soil enzyme activity, soil fertility, and wheat yield," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(9), pages 449-455.
    8. Wei, Shiyu & Kuang, Naikun & Jiao, Fengli & Zong, Rui & Li, Quanqi, 2023. "Exploring the effects of subsoiling tillage under various irrigation regimes on the evapotranspiration and crop water productivity of winter wheat using RZWQM2," Agricultural Water Management, Elsevier, vol. 289(C).
    9. Mateja Muršec & Jean Leveque, 2023. "δ13C as a tool to determine the origin of soil organic carbon: Case study of a restored sloping orchard," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(2), pages 81-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:65:y:2019:i:9:id:249-2019-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.