IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423003967.html
   My bibliography  Save this article

Exploring the effects of subsoiling tillage under various irrigation regimes on the evapotranspiration and crop water productivity of winter wheat using RZWQM2

Author

Listed:
  • Wei, Shiyu
  • Kuang, Naikun
  • Jiao, Fengli
  • Zong, Rui
  • Li, Quanqi

Abstract

Food security is an important pre-requisite for human well-being; however, water shortages and poor quality of arable land threaten food security in the North China Plain (NCP). Subsoiling and proper irrigation can improve soil structure and increase crop yield. This study investigated the effects of two tillage methods (rotary tillage at 15 cm depth, R15; subsoiling at 35 cm depth, S35) combined with three irrigation treatments (no irrigation during the winter wheat growing season, I0; 60 mm irrigation at the jointing stage, I1; 60 mm irrigation at both the jointing and heading stages, I2) on soil moisture dynamics, evapotranspiration, and winter wheat yield. The Root Zone Water Quality Model (RZWQM2) was adopted after calibration and validation base on a field experiment. The results showed that the normalized root mean square errors (calibration and test) between the actual and simulated values of soil water storage (SWS), evapotranspiration (ET), and yield were 7.45–10.87%, 3.80–7.21%, and 5.38–14.15%, respectively. Subsoiling improved winter wheat soil moisture conditions, yield, and crop water productivity (CWP), and irrigation during the winter wheat growing seasons increased crop yield (I2 > I1 > I0) and CWP (I1 > I2 > I0). The best yield treatment during the 2020–2022 winter wheat growing seasons was S35-I2. However, the CWP of S35-I1 was 2.67% higher than that of S35-I2. Tillage methods change the ET structure of winter wheat fields. Compared to rotary tillage, subsoiling reduced actual ET by 16.11% and increased actual transpiration by 10.44%. The results of this study indicate that subsoiling at a depth of 35 cm and 60 mm irrigation at the jointing stage could improve the CWP of winter wheat in the NCP.

Suggested Citation

  • Wei, Shiyu & Kuang, Naikun & Jiao, Fengli & Zong, Rui & Li, Quanqi, 2023. "Exploring the effects of subsoiling tillage under various irrigation regimes on the evapotranspiration and crop water productivity of winter wheat using RZWQM2," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003967
    DOI: 10.1016/j.agwat.2023.108531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Hongzheng & Wang, Yue & Jiang, Kongtao & Li, Shilei & Huang, Donghua & Wu, Jiujiang & Wang, Yongqiang & Wang, Yangren & Ma, Xiaoyi, 2022. "Simulation modeling for effective management of irrigation water for winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Anapalli, Saseendran S. & Ahuja, Lajpat R. & Gowda, Prasanna H. & Ma, Liwang & Marek, Gary & Evett, Steven R. & Howell, Terry A., 2016. "Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters," Agricultural Water Management, Elsevier, vol. 177(C), pages 274-283.
    4. Jiao, Fengli & Hong, Shengzhe & Cui, Jichao & Zhang, Qingfen & Li, Ming & Shi, Ruilin & Han, Huifang & Li, Quanqi, 2022. "Subsoiling combined with irrigation improves carbon emission and crop water productivity of winter wheat in North China Plain," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    6. Kaur, Rajbir & Arora, VK, 2019. "Deep tillage and residue mulch effects on productivity and water and nitrogen economy of spring maize in north-west India," Agricultural Water Management, Elsevier, vol. 213(C), pages 724-731.
    7. Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
    8. Liu, Haijun & Yu, Lipeng & Luo, Yu & Wang, Xiangping & Huang, Guanhua, 2011. "Responses of winter wheat (Triticum aestivum L.) evapotranspiration and yield to sprinkler irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(4), pages 483-492, February.
    9. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    10. You, Yongliang & Song, Ping & Yang, Xianlong & Zheng, Yapeng & Dong, Li & Chen, Jing, 2022. "Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 273(C).
    11. Zhang, Huihui & Ma, Liwang & Douglas-Mankin, Kyle R. & Han, Ming & Trout, Thomas J., 2021. "Modeling maize production under growth stage-based deficit irrigation management with RZWQM2," Agricultural Water Management, Elsevier, vol. 248(C).
    12. Yang, Guiyu & Li, Shuoyang & Wang, Hao & Wang, Lin, 2022. "Study on agricultural cultivation development layout based on the matching characteristic of water and land resources in North China Plain," Agricultural Water Management, Elsevier, vol. 259(C).
    13. Fan, Yanli & Liu, Junmei & Zhao, Jiatao & Ma, Yuzhao & Li, Quanqi, 2019. "Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns," Agricultural Water Management, Elsevier, vol. 221(C), pages 371-376.
    14. Li, Quanqi & Dong, Baodi & Qiao, Yunzhou & Liu, Mengyu & Zhang, Jiwang, 2010. "Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China," Agricultural Water Management, Elsevier, vol. 97(10), pages 1676-1682, October.
    15. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    16. Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).
    17. Ding, Jinli & Hu, Wei & Wu, Jicheng & Yang, Yonghui & Feng, Hao, 2020. "Simulating the effects of conventional versus conservation tillage on soil water, nitrogen dynamics, and yield of winter wheat with RZWQM2," Agricultural Water Management, Elsevier, vol. 230(C).
    18. Yu, Q. & Saseendran, S.A. & Ma, L. & Flerchinger, G.N. & Green, T.R. & Ahuja, L.R., 2006. "Modeling a wheat-maize double cropping system in China using two plant growth modules in RZWQM," Agricultural Systems, Elsevier, vol. 89(2-3), pages 457-477, September.
    19. Liu, Xiuwei & Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei, 2015. "Subsoil compaction and irrigation regimes affect the root–shoot relation and grain yield of winter wheat," Agricultural Water Management, Elsevier, vol. 154(C), pages 59-67.
    20. Xiaowen Wang & Huanjie Cai & Liang Li & Xiaoyun Wang, 2020. "Estimating Soil Water Content and Evapotranspiration of Winter Wheat under Deficit Irrigation Based on SWAP Model," Sustainability, MDPI, vol. 12(22), pages 1-29, November.
    21. Yin, Baozhong & Hu, Zhaohui & Wang, Yandong & Zhao, Jin & Pan, Zhihua & Zhen, Wenchao, 2021. "Effects of optimized subsoiling tillage on field water conservation and summer maize (Zea mays L.) yield in the North China Plain," Agricultural Water Management, Elsevier, vol. 247(C).
    22. Shaobo Wang & Liangliang Guo & Pengchong Zhou & Xuejie Wang & Ying Shen & Huifang Han & Tangyuan Ning & Kun Han, 2019. "Effect of subsoiling depth on soil physical properties and summer maize (Zea mays L.) yield," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(3), pages 131-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xuchen & Liu, Junming & Huang, Chao & Liu, Huihao & Meng, Ye & Chen, Haiqing & Ma, Shoutian & Liu, Zhandong, 2024. "The impacts of irrigation methods and regimes on the water and nitrogen utilization efficiency in subsoiling wheat fields," Agricultural Water Management, Elsevier, vol. 295(C).
    2. Yang, Lei & Fang, Xiangyang & Zhou, Jie & Zhao, Jie & Hou, Xiqing & Yang, Yadong & Zang, Huadong & Zeng, Zhaohai, 2024. "Optimal irrigation for wheat-maize rotation depending on precipitation in the North China Plain: Evidence from a four-year experiment," Agricultural Water Management, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).
    2. Jiao, Fengli & Hong, Shengzhe & Cui, Jichao & Zhang, Qingfen & Li, Ming & Shi, Ruilin & Han, Huifang & Li, Quanqi, 2022. "Subsoiling combined with irrigation improves carbon emission and crop water productivity of winter wheat in North China Plain," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Bao, Xiaoyuan & Zhang, Baoyuan & Dai, Menglei & Liu, Xuejing & Ren, Jianhong & Gu, Limin & Zhen, Wenchao, 2024. "Improvement of grain weight and crop water productivity in winter wheat by light and frequent irrigation based on crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 301(C).
    4. Yan, Zhenxing & Zhang, Wenying & Liu, Xiuwei & Wang, Qingsuo & Liu, Binhui & Mei, Xurong, 2024. "Grain yield and water productivity of winter wheat controlled by irrigation regime and manure substitution in the North China Plain," Agricultural Water Management, Elsevier, vol. 295(C).
    5. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.
    6. Leghari, Shah Jahan & Han, Wenting & Soomro, Aijaz Ahmed & Shoukat, Muhammad Rizwan & Zain, Muhammad & Wei, Yichang & Xu, Qiang & Buriro, Mahmooda & Bhutto, Tofique Ahmed & Soothar, Rajesh Kumar & Lag, 2024. "Navigating water and nitrogen practices for sustainable wheat production by model-based optimization management systems: A case study of China and Pakistan," Agricultural Water Management, Elsevier, vol. 300(C).
    7. Tianyi Yang & Haichao Yu & Sien Li & Xiangning Yuan & Xiang Ao & Haochong Chen & Yuexin Wang & Jie Ding, 2024. "Driving Factors and Numerical Simulation of Evapotranspiration of a Typical Cabbage Agroecosystem in the Shiyang River Basin, Northwest China," Agriculture, MDPI, vol. 14(6), pages 1-14, June.
    8. Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
    9. Jiao, Fengli & Ding, Risheng & Du, Taisheng & Kang, Jian & Tong, Ling & Gao, Jia & Shao, Jie, 2024. "Multi-growth stage regulated deficit irrigation improves maize water productivity in an arid region of China," Agricultural Water Management, Elsevier, vol. 297(C).
    10. Yang, Lei & Fang, Xiangyang & Zhou, Jie & Zhao, Jie & Hou, Xiqing & Yang, Yadong & Zang, Huadong & Zeng, Zhaohai, 2024. "Optimal irrigation for wheat-maize rotation depending on precipitation in the North China Plain: Evidence from a four-year experiment," Agricultural Water Management, Elsevier, vol. 294(C).
    11. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    12. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    14. You, Yongliang & Song, Ping & Yang, Xianlong & Zheng, Yapeng & Dong, Li & Chen, Jing, 2022. "Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Lu, Junsheng & Xiang, Youzhen & Fan, Junliang & Zhang, Fucang & Hu, Tiantian, 2021. "Sustainable high grain yield, nitrogen use efficiency and water productivity can be achieved in wheat-maize rotation system by changing irrigation and fertilization strategy," Agricultural Water Management, Elsevier, vol. 258(C).
    16. Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
    17. Li, Jinpeng & Wang, Yunqi & Zhang, Meng & Liu, Yang & Xu, Xuexin & Lin, Gang & Wang, Zhimin & Yang, Youming & Zhang, Yinghua, 2019. "Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat," Agricultural Water Management, Elsevier, vol. 211(C), pages 59-69.
    18. Gloaguen, Romain M. & Rowland, Diane L. & Brym, Zachary T. & Wilson, Chris. H. & Chun, Hyen Chung & Langham, Ray, 2021. "A METHOD FOR DEVELOPING IRRIGATION DECISION SUPPORT SYSTEMS de novo: EXAMPLE OF SESAME (Sesamum indicum L.) A KNOWN DROUGHT TOLERANT SPECIES," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Kuang, Naikun & Tan, Dechong & Li, Haojie & Gou, Qishu & Li, Quanqi & Han, Huifang, 2020. "Effects of subsoiling before winter wheat on water consumption characteristics and yield of summer maize on the North China Plain," Agricultural Water Management, Elsevier, vol. 227(C).
    20. Liu, Xuchen & Liu, Junming & Huang, Chao & Liu, Huihao & Meng, Ye & Chen, Haiqing & Ma, Shoutian & Liu, Zhandong, 2024. "The impacts of irrigation methods and regimes on the water and nitrogen utilization efficiency in subsoiling wheat fields," Agricultural Water Management, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.