IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v286y2023ics0378377423002597.html
   My bibliography  Save this article

Plant–water relations in subtropical maize fields under mulching and organic fertilization

Author

Listed:
  • Amin, M.G. Mostofa
  • Mahbub, S.M. Mubtasim
  • Hasan, Md. Moudud
  • Pervin, Wafa
  • Sharmin, Jinat
  • Hossain, Md. Delwar

Abstract

The plant–water relationship of maize under conservation practices needs to be assessed to quantify the effectiveness of the practices in conserving soil water for crop production. This study evaluated in three trials how straw and plastic film mulching and organic manure application could potentially change water fluxes in the root zone and increase maize yield. A mathematical model HYDRUS-1D was calibrated against the observed soil water content and drainage data to predict the water fluxes in the root zone soil. The model simulated soil water dynamics in the root zone with satisfactory performance (RMSE of 0.6–2.3%, CD of 0.37–1.41, NSE of 0.18–0.88, and R2 of 0.62–0.91) during both the calibration and validation periods. The model predicted the observed drainage in a lysimeter with only a 5.5–11.7% bias and actual evapotranspiration (ETc) with a 2.6–6.7% bias for the control conditions in all three trials when the model was provided with measured plant growth, soil properties, and weather data. Both measurement and modeling confirmed that mulching augmented soil water storage by reducing ETc, i.e., 0.24–0.37 mm d-1 by straw mulching and 0.05–0.24 mm d-1 by plastic mulching during the trials. Manure application did not affect the ETc rate and resulted in the highest grain yield (6.8–8.3 Mg ha˗1) followed by plastic mulching (6.1–8.1 Mg ha˗1) and straw mulching (5.3–7.5 Mg ha˗1). Manure application increased the harvest index by optimally allocating biomass because of a steady supply of water and nutrients. The straw mulch, plastic mulch, and manure treatments increased grain yield by 13%, 24%, and 35%, respectively, compared to the control condition. Large-scale implementation of these practices would lessen blue water scarcity in agriculture.

Suggested Citation

  • Amin, M.G. Mostofa & Mahbub, S.M. Mubtasim & Hasan, Md. Moudud & Pervin, Wafa & Sharmin, Jinat & Hossain, Md. Delwar, 2023. "Plant–water relations in subtropical maize fields under mulching and organic fertilization," Agricultural Water Management, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s0378377423002597
    DOI: 10.1016/j.agwat.2023.108394
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423002597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108394?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu Lian & Shilong Piao & Chris Huntingford & Yue Li & Zhenzhong Zeng & Xuhui Wang & Philippe Ciais & Tim R. McVicar & Shushi Peng & Catherine Ottlé & Hui Yang & Yuting Yang & Yongqiang Zhang & Tao Wan, 2018. "Partitioning global land evapotranspiration using CMIP5 models constrained by observations," Nature Climate Change, Nature, vol. 8(7), pages 640-646, July.
    2. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    3. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    4. Wang, Xiaolin & Ren, Yuanyuan & Zhang, Suiqi & Chen, Yinglong & Wang, Nan, 2017. "Applications of organic manure increased maize (Zea mays L.) yield and water productivity in a semi-arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 88-98.
    5. Jiang, Rui & Li, Xiao & Zhu, Wei & Wang, Kun & Guo, Sheng & Misselbrook, Tom & Hatano, Ryusuke, 2018. "Effects of the ridge mulched system on soil water and inorganic nitrogen distribution in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 203(C), pages 277-288.
    6. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    7. Chakraborty, Debashis & Garg, R.N. & Tomar, R.K. & Singh, Ravender & Sharma, S.K. & Singh, R.K. & Trivedi, S.M. & Mittal, R.B. & Sharma, P.K. & Kamble, K.H., 2010. "Synthetic and organic mulching and nitrogen effect on winter wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 97(5), pages 738-748, May.
    8. J.Y. Shen & D.D. Zhao & H.F. Han & X.B. Zhou & Q.Q. Li, 2012. "Effects of straw mulching on water consumption characteristics and yield of different types of summer maize plants," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(4), pages 161-166.
    9. Zhou, Hong & Zhao, Wen zhi, 2019. "Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 286-302.
    10. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    11. Ma, Dedi & Chen, Lei & Qu, Hongchao & Wang, Yilin & Misselbrook, Tom & Jiang, Rui, 2018. "Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 202(C), pages 166-173.
    12. Meysam ABEDINPOUR, 2015. "Evaluation of growth-stage-specific crop coefficients of maize using weighing lysimeter," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(2), pages 99-104.
    13. Chen, Baoqing & Liu, Enke & Mei, Xurong & Yan, Changrong & Garré, Sarah, 2018. "Modelling soil water dynamic in rain-fed spring maize field with plastic mulching," Agricultural Water Management, Elsevier, vol. 198(C), pages 19-27.
    14. Mbava, N. & Mutema, M. & Zengeni, R. & Shimelis, H. & Chaplot, V., 2020. "Factors affecting crop water use efficiency: A worldwide meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Ruiqi & Xiang, Youzhen & Zhang, Fucang & Chen, Junying & Shi, Hongzhao & Liu, Hao & Yang, Xiaofei & Yang, Ning & Yang, Xizhen & Wang, Tianyang & Wu, Yuxiao, 2024. "Combing transfer learning with the OPtical TRApezoid Model (OPTRAM) to diagnosis small-scale field soil moisture from hyperspectral data," Agricultural Water Management, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Yuwei & Chai, Qiang & Yang, Changgang & Chen, Yuzhang & Li, Rui & Li, Yawei & Chang, Lei & Lan, Xuemei & Cheng, Hongbo & Chai, Shouxi, 2022. "Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Xuemei Lan & Shouxi Chai & Jeffrey A. Coulter & Hongbo Cheng & Lei Chang & Caixia Huang & Rui Li & Yuwei Chai & Yawei Li & Jiantao Ma & Li Li, 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    3. Wang, Huan & Fan, Jun & Fu, Wei & Du, Mengge & Zhou, Gu & Zhou, Mingxing & Hao, Mingde & Shao, Ming'an, 2022. "Good harvests of winter wheat from stored soil water and improved temperature during fallow period by plastic film mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
    6. Yan, Qiuyan & Dong, Fei & Yang, Feng & Lu, Jinxiu & Li, Feng & Zhang, Jiancheng & Dong, Jinlong & Li, Junhui, 2019. "Improved yield and water storage of the wheat-maize rotation system due to double-blank row mulching during the wheat stage," Agricultural Water Management, Elsevier, vol. 213(C), pages 903-912.
    7. Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    8. Xing Wang & Hailong Sun & Changming Tan & Xiaowen Wang & Min Xia, 2021. "Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    9. Fu, Wei & Fan, Jun & Hao, Mingde & Hu, Jinsheng & Wang, Huan, 2021. "Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Li, Shuo & Wang, Shujuan & Shi, Jianglan & Tian, Xiaohong & Wu, Jiechen, 2022. "Economic, energy and environmental performance assessment on wheat production under water-saving cultivation strategies," Energy, Elsevier, vol. 261(PB).
    11. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Yang, Chong & Feng, Shouli & Yu, Jingyin & Tao, Xiaoyuan & Gao, Xuhua & Xu, Shengchun, 2024. "Effects of PLA/PBAT-based biodegradable film mulch on water and nitrogen dynamics in soil-potato system," Agricultural Water Management, Elsevier, vol. 297(C).
    14. Wang, Naijiang & Ding, Dianyuan & Malone, Robert W. & Chen, Haixin & Wei, Yongsheng & Zhang, Tibin & Luo, Xiaoqi & Li, Cheng & Chu, Xiaosheng & Feng, Hao, 2020. "When does plastic-film mulching yield more for dryland maize in the Loess Plateau of China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 240(C).
    15. Duan, Chenxiao & Chen, Jifei & Li, Jiabei & Su, Shunshun & Lei, Qi & Feng, Hao & Wu, Shufang & Zhang, Tibin & Siddique, Kadambot H.M. & Zou, Yufeng, 2022. "Biomaterial amendments combined with ridge–furrow mulching improve soil hydrothermal characteristics and wolfberry (Lycium barbarum L.) growth in the Qaidam Basin of China," Agricultural Water Management, Elsevier, vol. 259(C).
    16. Li, Rui & Chai, Shouxi & Chai, Yuwei & Li, Yawei & Lan, Xuemei & Ma, Jiantao & Cheng, Hongbo & Chang, Lei, 2021. "Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 254(C).
    17. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    18. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    19. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    20. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s0378377423002597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.