IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v63y2017i9id344-2017-pse.html
   My bibliography  Save this article

Potassium impact on nitrogen use efficiency in potato - a case study from the Central-East Europe

Author

Listed:
  • Witold GRZEBISZ

    (Poznan University Life Sciences, Poznan, Poland)

  • Pavel ČERMÁK

    (Crop Research Institute, Prague, Czech Republic)

  • Evan RROCO

    (Agricultural University of Tirana, Tirana, Albania)

  • Witold SZCZEPANIAK

    (Poznan University Life Sciences, Poznan, Poland)

  • Jarosław POTARZYCKI

    (Poznan University Life Sciences, Poznan, Poland)

  • György FÜLEKY

    (Szent István University, Gödöllő, Hungary)

Abstract

Potato yield is affected by an interaction between nitrogen (N) and potassium (K) supply. This hypothesis was verified in a series of field experiments conducted during 2010-2013 in Albania (AL), Czech Republic (CZ) and Poland (PL). The two-factorial experiment was founded on relative scales of K (0, 50, 100, and 150%), and N application rates (75% and 100%) of the recommended doses, which were country-specific. The average tuber yield was doubled for AL, increased by 50% for PL, and by 15% for the CZ in response to K and N interaction. These differences are caused by an increase in the apparent nitrogen efficiency (ANE), which rose significantly by the progressive Krates. Maximum average ANE of 90 kg tubers/kg N was recorded in AL; it was 2-fold lower in CZ. Top average apparent potassium efficiency (AKE) of 65 kg tubers/kg K was recorded in PL; it was 4-times lower in CZ. The relationships between AKE and ANE clearly demonstrate the tight interaction between the N and K, and its effects on potato yield. However, a sound K application management should be adjusted to the local edaphic and climatic conditions.

Suggested Citation

  • Witold GRZEBISZ & Pavel ČERMÁK & Evan RROCO & Witold SZCZEPANIAK & Jarosław POTARZYCKI & György FÜLEKY, 2017. "Potassium impact on nitrogen use efficiency in potato - a case study from the Central-East Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(9), pages 422-427.
  • Handle: RePEc:caa:jnlpse:v:63:y:2017:i:9:id:344-2017-pse
    DOI: 10.17221/344/2017-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/344/2017-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/344/2017-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/344/2017-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Madaras & M. Koubová & M. Smatanová, 2014. "Long-term effect of low potassium fertilization on its soil fractions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(8), pages 358-363.
    2. Supit, I. & van Diepen, C.A. & de Wit, A.J.W. & Kabat, P. & Baruth, B. & Ludwig, F., 2010. "Recent changes in the climatic yield potential of various crops in Europe," Agricultural Systems, Elsevier, vol. 103(9), pages 683-694, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Witold GRZEBISZ & Jarosław POTARZYCKI & Maria BIBER, 2018. "The early prognosis of tuber yield based on nitrogen status in potato tops," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(11), pages 539-545.
    2. Martin Král & Petr Dvořák & Ivana Capouchová, 2019. "The straw as mulch and compost as a tool for mitigation of drought impacts in the potatoes cultivation," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(11), pages 530-535.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadaja, Jüri & Saue, Triin, 2016. "Potential effects of different irrigation and drainage regimes on yield and water productivity of two potato varieties under Estonian temperate climate," Agricultural Water Management, Elsevier, vol. 165(C), pages 61-71.
    2. Jiří Balík & Jindřich Černý & Martin Kulhánek & Ondřej Sedlář & Pavel Suran, 2019. "Balance of potassium in two long-term field experiments with different fertilization treatments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(5), pages 225-232.
    3. Summer Mabula & Keoikantse Sianga & Ayana Angassa, 2024. "Indigenous Ecological Knowledge and Perceptions of Climate Change on the Environment and Livelihood of Local Communities in Kgalagadi District of Botswana," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 17(4), pages 1-15, July.
    4. Witold GRZEBISZ & Jarosław POTARZYCKI & Maria BIBER, 2018. "The early prognosis of tuber yield based on nitrogen status in potato tops," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(11), pages 539-545.
    5. Céline Guivarch & Nicolas Taconet, 2020. "Inégalités mondiales et changement climatique," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(1), pages 35-70.
    6. Qiong Jia & Mengfei Li & Xuecheng Dou, 2022. "Climate Change Affects Crop Production Potential in Semi-Arid Regions: A Case Study in Dingxi, Northwest China, in Recent 30 Years," Sustainability, MDPI, vol. 14(6), pages 1-12, March.
    7. Marc Audi & Amjad Ali & Mohamad Kassem, 2020. "Greenhouse Gases: A Review of Losses and Benefits," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 403-418.
    8. Nana, E. & Corbari, C. & Bocchiola, D., 2014. "A model for crop yield and water footprint assessment: Study of maize in the Po valley," Agricultural Systems, Elsevier, vol. 127(C), pages 139-149.
    9. Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
    10. Yang, Chenyao & Fraga, Helder & Ieperen, Wim Van & Santos, João Andrade, 2017. "Assessment of irrigated maize yield response to climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 184(C), pages 178-190.
    11. Schmidtner, Eva & Dabbert, Stephan & Lippert, Christian, 2015. "Do Different Measurements of Soil Quality Influence the Results of a Ricardian Analysis? – A Case Study on the Effects of Climate Change on German Agriculture," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 64(02), June.
    12. Palazzoli, I. & Maskey, S. & Uhlenbrook, S. & Nana, E. & Bocchiola, D., 2015. "Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal," Agricultural Systems, Elsevier, vol. 133(C), pages 143-157.
    13. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    14. Tiecheng Bai & Nannan Zhang & Youqi Chen & Benoit Mercatoris, 2019. "Assessing the Performance of the WOFOST Model in Simulating Jujube Fruit Tree Growth under Different Irrigation Regimes," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    15. Fevzi AKBAS & Hikmet GUNAL & Nurullah ACIR, 2017. "Spatial variability of soil potassium and its relationship to land use and parent material," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(4), pages 202-211.
    16. Fei, Li & Meijun, Zhou & Jiaqi, Shao & Zehui, Chen & Xiaoli, Wei & Jiuchun, Yang, 2020. "Maize, wheat and rice production potential changes in China under the background of climate change," Agricultural Systems, Elsevier, vol. 182(C).
    17. Jiandong Liu & Jun Du & De-Li Liu & Hans W. Linderholm & Guangsheng Zhou & Yanling Song & Yanbo Shen & Qiang Yu, 2022. "Spatial and Temporal Variations in the Potential Yields of Highland Barley in Relation to Climate Change in Three Rivers Region of the Tibetan Plateau from 1961 to 2020," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    18. M. Madaras & M. Koubová, 2015. "Potassium availability and soil extraction tests in agricultural soils with low exchangeable potassium content," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(5), pages 234-239.
    19. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:63:y:2017:i:9:id:344-2017-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.