IDEAS home Printed from https://ideas.repec.org/a/buc/jgbeco/v8y2014i2p1-15.html
   My bibliography  Save this article

When is a multiple bet better than a single ?

Author

Listed:
  • Nicos Zafiris

Abstract

The paper addresses an apparent paradox observed in betting on football scores, drawing on 20-year data from the English 2nd tier division (Championship). While accumulator bets have a lower Net Expected Value than single bets, ‘cross double’ bets on the scores, placed over successive playing rounds, produce distinctly better results and indeed a positive return overall. It is argued that this effect rests on the essential stability of the score frequencies across playing seasons and on the bookmakers’ failure, in setting the odds, to allow for occasional and temporary deviations from long run average frequencies. A betting strategy based on overdue scores occurring with compensating frequencies, and possibly clustered together, can then produce positive returns. Neglect of overdue scores can be expressed formally as a bias augmenting the probability of these and turning the odds in the bettor’s favour. It is shown that, while normally the bettor’s disadvantage is compounded in multiple bets, a compounded advantage results once the odds become better than fair. The paper also discusses certain quasi binomial characteristics of the betting involved and explores possible ways of hedging such bets ‘in running’.

Suggested Citation

  • Nicos Zafiris, 2014. "When is a multiple bet better than a single ?," Journal of Gambling Business and Economics, University of Buckingham Press, vol. 8(2), pages 1-15.
  • Handle: RePEc:buc:jgbeco:v:8:y:2014:i:2:p:1-15
    as

    Download full text from publisher

    File URL: http://www.ubplj.org/index.php/jgbe/article/view/803
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mukhtar Ali, 1998. "Probability models on horse-race outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(2), pages 221-229.
    2. G. K. Skinner & G. H. Freeman, 2009. "Soccer matches as experiments: how often does the 'best' team win?," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1087-1095.
    3. Forrest, David & Simmons, Robert, 2000. "Forecasting sport: the behaviour and performance of football tipsters," International Journal of Forecasting, Elsevier, vol. 16(3), pages 317-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominic Cortis, 2015. "Expected Values And Variances In Bookmaker Payouts: A Theoretical Approach Towards Setting Limits On Odds," Journal of Prediction Markets, University of Buckingham Press, vol. 9(1), pages 1-14.
    2. Nicos Zafiris, 2016. "Is There Such A Thing As A Safe Bet ?," Journal of Gambling Business and Economics, University of Buckingham Press, vol. 10(1), pages 40-65.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strumbelj, E. & Sikonja, M. Robnik, 2010. "Online bookmakers' odds as forecasts: The case of European soccer leagues," International Journal of Forecasting, Elsevier, vol. 26(3), pages 482-488, July.
    2. Bernardo, Giovanni & Ruberti, Massimo & Verona, Roberto, 2019. "Semi-strong inefficiency in the fixed odds betting market: Underestimating the positive impact of head coach replacement in the main European soccer leagues," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 239-246.
    3. Bernardo, Giovanni & Ruberti, Massimo & Verona, Roberto, 2015. "Testing semi-strong efficiency in a fixed odds betting market: Evidence from principal European football leagues," MPRA Paper 66414, University Library of Munich, Germany.
    4. C F Elliott & R Simmons, 2007. "Determinants of UK box office success: the impact of quality signals," Working Papers 584026, Lancaster University Management School, Economics Department.
    5. Jaume García & Levi Pérez & Plácido Rodríguez, 2017. "Forecasting football match results: are the many smarter than the few?," Chapters, in: Plácido Rodríguez & Brad R. Humphreys & Robert Simmons (ed.), The Economics of Sports Betting, chapter 5, pages 71-91, Edward Elgar Publishing.
    6. S Lessmann & M-C Sung & J E V Johnson, 2011. "Towards a methodology for measuring the true degree of efficiency in a speculative market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2120-2132, December.
    7. repec:lan:wpaper:1090 is not listed on IDEAS
    8. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    9. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    10. Babatunde Buraimo & David Peel & Rob Simmons, 2013. "Systematic Positive Expected Returns in the UK Fixed Odds Betting Market: An Analysis of the Fink Tank Predictions," IJFS, MDPI, vol. 1(4), pages 1-15, December.
    11. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    12. James Reade, 2014. "Information And Predictability: Bookmakers, Prediction Markets And Tipsters As Forecasters," Journal of Prediction Markets, University of Buckingham Press, vol. 8(1), pages 43-76.
    13. Christoph Buehren & Tim Meyer & Christian Pierdzioch, 2020. "Experimental Evidence on Forecaster (anti-) Herding in Sports Markets," MAGKS Papers on Economics 202038, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    14. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
    15. Jaiho Chung & Joon Ho Hwang, 2010. "An Empirical Examination of the Parimutuel Sports Lottery Market versus the Bookmaker Market," Southern Economic Journal, John Wiley & Sons, vol. 76(4), pages 884-905, April.
    16. Ferda Halicioglu, 2005. "Can We Predict The Outcome Of The International Football Tournaments : The Case Of Euro 2000?," Microeconomics 0503008, University Library of Munich, Germany.
    17. Song, ChiUng & Boulier, Bryan L. & Stekler, Herman O., 2007. "The comparative accuracy of judgmental and model forecasts of American football games," International Journal of Forecasting, Elsevier, vol. 23(3), pages 405-413.
    18. Butler, David & Butler, Robert & Eakins, John, 2021. "Expert performance and crowd wisdom: Evidence from English Premier League predictions," European Journal of Operational Research, Elsevier, vol. 288(1), pages 170-182.
    19. Principe, Francesco & van Ours, Jan C., 2022. "Racial bias in newspaper ratings of professional football players," European Economic Review, Elsevier, vol. 141(C).
    20. Jinook Jeong & Jee Young Kim & Yoon Jae Ro, 2019. "On the efficiency of racetrack betting market: a new test for the favourite-longshot bias," Applied Economics, Taylor & Francis Journals, vol. 51(54), pages 5817-5828, November.
    21. Ian McHale & Rose Baker, 2014. "Econometric modelling of match results and scores," Chapters, in: John Goddard & Peter Sloane (ed.), Handbook on the Economics of Professional Football, chapter 9, pages 130-140, Edward Elgar Publishing.

    More about this item

    JEL classification:

    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:buc:jgbeco:v:8:y:2014:i:2:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dominic Cortis, University of Malta (email available below). General contact details of provider: http://www.ubpl.co.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.