IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v173y2019icp620-639.html
   My bibliography  Save this article

The bootstrap in kernel regression for stationary ergodic data when both response and predictor are functions

Author

Listed:
  • Krebs, Johannes T.N.

Abstract

We consider the double functional regression model Y=r(X)+ε, where the response variable Y is Hilbert space-valued and the covariate X takes values in a pseudometric space. The data satisfy an ergodicity criterion which dates back to Laib and Louani (2010) and are arranged in a triangular array. So our model also applies to samples obtained from spatial processes, e.g., stationary random fields.

Suggested Citation

  • Krebs, Johannes T.N., 2019. "The bootstrap in kernel regression for stationary ergodic data when both response and predictor are functions," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 620-639.
  • Handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:620-639
    DOI: 10.1016/j.jmva.2019.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18303324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
    2. Ferraty, F. & Van Keilegom, I. & Vieu, P., 2012. "Regression when both response and predictor are functions," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 10-28.
    3. Frédéric Ferraty & Ingrid Van Keilegom & Philippe Vieu, 2010. "On the Validity of the Bootstrap in Non‐Parametric Functional Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 286-306, June.
    4. Laib, Naâmane & Louani, Djamal, 2010. "Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2266-2281, November.
    5. Kundu, Subrata & Majumdar, Suman & Mukherjee, Kanchan, 2000. "Central Limit Theorems revisited," Statistics & Probability Letters, Elsevier, vol. 47(3), pages 265-275, April.
    6. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    2. Ferraty, F. & Van Keilegom, I. & Vieu, P., 2012. "Regression when both response and predictor are functions," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 10-28.
    3. Joydeep Chowdhury & Probal Chaudhuri, 2020. "Convergence rates for kernel regression in infinite-dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 471-509, April.
    4. Mohamed Chaouch & Naâmane Laïb & Djamal Louani, 2017. "Rate of uniform consistency for a class of mode regression on functional stationary ergodic data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 19-47, March.
    5. Geenens, Gery, 2015. "Moments, errors, asymptotic normality and large deviation principle in nonparametric functional regression," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 369-377.
    6. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    8. Shang, Han Lin, 2016. "A Bayesian approach for determining the optimal semi-metric and bandwidth in scalar-on-function quantile regression with unknown error density and dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 95-104.
    9. Larbi Ait-Hennani & Zoulikha Kaid & Ali Laksaci & Mustapha Rachdi, 2022. "Nonparametric Estimation of the Expected Shortfall Regression for Quasi-Associated Functional Data," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    10. Aubin, Jean-Baptiste & Bongiorno, Enea G. & Goia, Aldo, 2022. "The correction term in a small-ball probability factorization for random curves," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    11. Yousri Slaoui, 2021. "Recursive non-parametric kernel classification rule estimation for independent functional data," Computational Statistics, Springer, vol. 36(1), pages 79-112, March.
    12. Graciela Boente & Daniela Rodriguez & Mariela Sued, 2018. "Testing equality between several populations covariance operators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 919-950, August.
    13. Igor S. Borisov & Yuliana Yu. Linke & Pavel S. Ruzankin, 2021. "Universal weighted kernel-type estimators for some class of regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 141-166, February.
    14. Ling, Nengxiang & Xu, Qian, 2012. "Asymptotic normality of conditional density estimation in the single index model for functional time series data," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2235-2243.
    15. Salim Bouzebda & Boutheina Nemouchi, 2023. "Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 33-88, April.
    16. Ling, Nengxiang & Wang, Chao & Ling, Jin, 2016. "Modified kernel regression estimation with functional time series data," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 78-85.
    17. Liu, Qiaojing & Zhao, Shoujiang, 2013. "Pointwise and uniform moderate deviations for nonparametric regression function estimator on functional data," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1372-1381.
    18. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    19. Mohamed Chaouch & Salah Khardani, 2015. "Randomly censored quantile regression estimation using functional stationary ergodic data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 65-87, March.
    20. Chaouch, Mohamed, 2019. "Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 129-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:620-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.