IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v154y2019ic18.html
   My bibliography  Save this article

Optimal asymptotic MSE of kernel regression estimate for continuous time processes with missing at random response

Author

Listed:
  • Chaouch, Mohamed
  • Laïb, Naâmane

Abstract

Based on an incomplete observed sample (Xt,Yt,ζt)0≤t≤T, where ζt=1 if Yt is observed at time t and ζt=0 otherwise, the asymptotic mean square error of the regression estimator m̂T(x),x∈Rd, is showed to satisfy the following inequality: limT→∞T4∕(d+4)E(m̂T(x)−m(x))2

Suggested Citation

  • Chaouch, Mohamed & Laïb, Naâmane, 2019. "Optimal asymptotic MSE of kernel regression estimate for continuous time processes with missing at random response," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
  • Handle: RePEc:eee:stapro:v:154:y:2019:i:c:18
    DOI: 10.1016/j.spl.2019.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521930166X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Didi, Sultana & Louani, Djamal, 2013. "Consistency results for the kernel density estimate on continuous time stationary and dependent data," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1262-1270.
    2. El Heda, Khadijetou & Louani, Djamal, 2018. "Optimal bandwidth selection in kernel density estimation for continuous time dependent processes," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 9-19.
    3. D. Blanke & B. Pumo, 2003. "Optimal sampling for density estimation in continuous time," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 1-23, January.
    4. Laib, Naâmane & Louani, Djamal, 2010. "Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2266-2281, November.
    5. Laïb, Naâmane & Louani, Djamal, 2019. "Asymptotic normality of kernel density function estimator from continuous time stationary and dependent processes," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 187-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salim Bouzebda & Mohamed Chaouch & Sultana Didi Biha, 2022. "Asymptotics for function derivatives estimators based on stationary and ergodic discrete time processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 737-771, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laïb, Naâmane & Louani, Djamal, 2019. "Asymptotic normality of kernel density function estimator from continuous time stationary and dependent processes," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 187-196.
    2. Gao, Min & Yang, Wenzhi & Wu, Shipeng & Yu, Wei, 2022. "Asymptotic normality of residual density estimator in stationary and explosive autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    3. Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
    4. Mohamed Chaouch & Naâmane Laïb & Djamal Louani, 2017. "Rate of uniform consistency for a class of mode regression on functional stationary ergodic data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 19-47, March.
    5. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Blanke, Delphine & Vial, Céline, 2008. "Assessing the number of mean square derivatives of a Gaussian process," Stochastic Processes and their Applications, Elsevier, vol. 118(10), pages 1852-1869, October.
    7. El Heda, Khadijetou & Louani, Djamal, 2018. "Optimal bandwidth selection in kernel density estimation for continuous time dependent processes," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 9-19.
    8. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    9. Kamal Boukhetala & Jean-François Dupuy, 2019. "Modélisation Stochastique et Statistique Book of Proceedings," Post-Print hal-02593238, HAL.
    10. Chen, Jinyu & Wang, Yilin & Ren, Xiaohang, 2023. "Asymmetric effect of financial stress on China’s precious metals market: Evidence from a quantile-on-quantile regression," Research in International Business and Finance, Elsevier, vol. 64(C).
    11. Dengke Xu & Jiang Du, 2020. "Nonparametric quantile regression estimation for functional data with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(8), pages 977-990, November.
    12. Igor S. Borisov & Yuliana Yu. Linke & Pavel S. Ruzankin, 2021. "Universal weighted kernel-type estimators for some class of regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 141-166, February.
    13. Salim Bouzebda & Mohamed Chaouch & Sultana Didi Biha, 2022. "Asymptotics for function derivatives estimators based on stationary and ergodic discrete time processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 737-771, August.
    14. Dawei Lu & Lina Wang, 2021. "On the Rates of Asymptotic Normality for Bernstein Polynomial Estimators in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1519-1536, December.
    15. Akkal Fatima & Kadiri Nadia & Rabhi Abbes, 2021. "Asymptotic Normality of Conditional Density and Conditional Mode in the Functional Single Index Model," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(1), pages 1-24, March.
    16. Ling, Nengxiang & Wang, Chao & Ling, Jin, 2016. "Modified kernel regression estimation with functional time series data," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 78-85.
    17. Liu, Qiaojing & Zhao, Shoujiang, 2013. "Pointwise and uniform moderate deviations for nonparametric regression function estimator on functional data," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1372-1381.
    18. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    19. Harry Zanten & Pawel Zareba, 2008. "A note on wavelet density deconvolution for weakly dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 11(2), pages 207-219, June.
    20. Mohamed Chaouch & Salah Khardani, 2015. "Randomly censored quantile regression estimation using functional stationary ergodic data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 65-87, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:154:y:2019:i:c:18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.