IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v24y2006i3p21n3.html
   My bibliography  Save this article

Oracle inequalities for multi-fold cross validation

Author

Listed:
  • Vaart Aad W. van der
  • Dudoit Sandrine
  • Laan Mark J. van der

Abstract

We consider choosing an estimator or model from a given class by cross validation consisting of holding a nonneglible fraction of the observations out as a test set. We derive bounds that show that the risk of the resulting procedure is (up to a constant) smaller than the risk of an oracle plus an error which typically grows logarithmically with the number of estimators in the class. We extend the results to penalized cross validation in order to control unbounded loss functions. Applications include regression with squared and absolute deviation loss and classification under Tsybakov’s condition.

Suggested Citation

  • Vaart Aad W. van der & Dudoit Sandrine & Laan Mark J. van der, 2006. "Oracle inequalities for multi-fold cross validation," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 351-371, December.
  • Handle: RePEc:bpj:strimo:v:24:y:2006:i:3:p:21:n:3
    DOI: 10.1524/stnd.2006.24.3.351
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.2006.24.3.351
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.2006.24.3.351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrews, Donald W. K., 1991. "Asymptotic optimality of generalized CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 359-377, February.
    2. Laan Mark J. van der & Dudoit Sandrine & Vaart Aad W. van der, 2006. "The cross-validated adaptive epsilon-net estimator," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 373-395, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    2. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    3. I Díaz & O Savenkov & K Ballman, 2018. "Targeted learning ensembles for optimal individualized treatment rules with time-to-event outcomes," Biometrika, Biometrika Trust, vol. 105(3), pages 723-738.
    4. Verhagen, Mark D., 2021. "Identifying and Improving Functional Form Complexity: A Machine Learning Framework," SocArXiv bka76, Center for Open Science.
    5. van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
    6. Zhang, Yongli & Yang, Yuhong, 2015. "Cross-validation for selecting a model selection procedure," Journal of Econometrics, Elsevier, vol. 187(1), pages 95-112.
    7. Laan Mark J. van der & Dudoit Sandrine & Vaart Aad W. van der, 2006. "The cross-validated adaptive epsilon-net estimator," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 373-395, December.
    8. Zihao Li & Hui Lan & Vasilis Syrgkanis & Mengdi Wang & Masatoshi Uehara, 2024. "Regularized DeepIV with Model Selection," Papers 2403.04236, arXiv.org.
    9. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    10. Mahmood Zafar & Khan Salahuddin, 2009. "On the Use of K-Fold Cross-Validation to Choose Cutoff Values and Assess the Performance of Predictive Models in Stepwise Regression," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-21, July.
    11. Fahimeh Hadavimoghaddam & Mehdi Ostadhassan & Ehsan Heidaryan & Mohammad Ali Sadri & Inna Chapanova & Evgeny Popov & Alexey Cheremisin & Saeed Rafieepour, 2021. "Prediction of Dead Oil Viscosity: Machine Learning vs. Classical Correlations," Energies, MDPI, vol. 14(4), pages 1-16, February.
    12. Díaz Muñoz Iván & van der Laan Mark J., 2011. "Super Learner Based Conditional Density Estimation with Application to Marginal Structural Models," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
    2. Delgado, Miguel A & Robinson, Peter M, 1992. "Nonparametric and Semiparametric Methods for Economic Research," Journal of Economic Surveys, Wiley Blackwell, vol. 6(3), pages 201-249.
    3. Cong Li & Qi Li & Jeffrey Racine & DAIQIANG ZHANG, 2017. "Optimal Model Averaging Of Varying Coefficient Models," Department of Economics Working Papers 2017-01, McMaster University.
    4. Harley Frazis & Jay Stewart, 2006. "How Does Household Production Affect Earnings Inequality?: Evidence from the American Time Use Survey," Economics Working Paper Archive wp_454, Levy Economics Institute.
    5. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    6. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    7. Soren Blomquist & Whitney Newey, 2002. "Nonparametric Estimation with Nonlinear Budget Sets," Econometrica, Econometric Society, vol. 70(6), pages 2455-2480, November.
    8. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2015. "Tree-based censored regression with applications to insurance," Working Papers hal-01141228, HAL.
    9. William R. Emmons & Frank A. Schmid, 2004. "When for-profits and not-for-profits compete: theory and empirical evidence from retail banking," Supervisory Policy Analysis Working Papers 2004-01, Federal Reserve Bank of St. Louis.
    10. Park, Joon Y. & Shin, Kwanho & Whang, Yoon-Jae, 2010. "A semiparametric cointegrating regression: Investigating the effects of age distributions on consumption and saving," Journal of Econometrics, Elsevier, vol. 157(1), pages 165-178, July.
    11. Embaye, Weldensie T. & Zereyesus, Yacob A., 2017. "Measuring the value of housing services in household surveys: an application of machine learning approach," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252851, Southern Agricultural Economics Association.
    12. Zhao, Shangwei & Xie, Tian & Ai, Xin & Yang, Guangren & Zhang, Xinyu, 2023. "Correcting sample selection bias with model averaging for consumer demand forecasting," Economic Modelling, Elsevier, vol. 123(C).
    13. Ida Johnsson & Hyungsik Roger Moon, 2017. "Estimation of Peer Effects in Endogenous Social Networks: Control Function Approach," Papers 1709.10024, arXiv.org, revised Jul 2019.
    14. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    15. Qian, Junhui & Wang, Le, 2012. "Estimating semiparametric panel data models by marginal integration," Journal of Econometrics, Elsevier, vol. 167(2), pages 483-493.
    16. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.
    17. Ruiqi Liu & Ben Boukai & Zuofeng Shang, 2019. "Statistical Inference on Partially Linear Panel Model under Unobserved Linearity," Papers 1911.08830, arXiv.org.
    18. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01141228, HAL.
    19. Donald W. K. Andrews & Ming Li, 2024. "Inference in a Stationary/Nonstationary Autoregressive Time-Varying-Parameter Model," Cowles Foundation Discussion Papers 2389, Cowles Foundation for Research in Economics, Yale University.
    20. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:24:y:2006:i:3:p:21:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.