Prediction of Dead Oil Viscosity: Machine Learning vs. Classical Correlations
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Hui & Rose, Sherri & van der Laan, Mark J., 2011. "Finding quantitative trait loci genes with collaborative targeted maximum likelihood learning," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 792-796, July.
- Sinisi Sandra E. & Polley Eric C & Petersen Maya L & Rhee Soo-Yon & van der Laan Mark J., 2007. "Super Learning: An Application to the Prediction of HIV-1 Drug Resistance," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 6(1), pages 1-26, February.
- Vaart Aad W. van der & Dudoit Sandrine & Laan Mark J. van der, 2006. "Oracle inequalities for multi-fold cross validation," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 351-371, December.
- Elizabeth M Sweeney & Joshua T Vogelstein & Jennifer L Cuzzocreo & Peter A Calabresi & Daniel S Reich & Ciprian M Crainiceanu & Russell T Shinohara, 2014. "A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.
- Cheng Ju & Mary Combs & Samuel D. Lendle & Jessica M. Franklin & Richard Wyss & Sebastian Schneeweiss & Mark J. van der Laan, 2019. "Propensity score prediction for electronic healthcare databases using super learner and high-dimensional propensity score methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(12), pages 2216-2236, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ricardo Vinuesa & Soledad Le Clainche, 2022. "Machine-Learning Methods for Complex Flows," Energies, MDPI, vol. 15(4), pages 1-5, February.
- Dicho S. Stratiev & Svetoslav Nenov & Ivelina K. Shishkova & Rosen K. Dinkov & Kamen Zlatanov & Dobromir Yordanov & Sotir Sotirov & Evdokia Sotirova & Vassia Atanassova & Krassimir Atanassov & Danail , 2021. "Comparison of Empirical Models to Predict Viscosity of Secondary Vacuum Gas Oils," Resources, MDPI, vol. 10(8), pages 1-17, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- André Altmann & Michal Rosen-Zvi & Mattia Prosperi & Ehud Aharoni & Hani Neuvirth & Eugen Schülter & Joachim Büch & Daniel Struck & Yardena Peres & Francesca Incardona & Anders Sönnerborg & Rolf Kaise, 2008. "Comparison of Classifier Fusion Methods for Predicting Response to Anti HIV-1 Therapy," PLOS ONE, Public Library of Science, vol. 3(10), pages 1-9, October.
- Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
- Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
- Laan Mark J. van der & Dudoit Sandrine & Vaart Aad W. van der, 2006. "The cross-validated adaptive epsilon-net estimator," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 373-395, December.
- Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
- Mahmood Zafar & Khan Salahuddin, 2009. "On the Use of K-Fold Cross-Validation to Choose Cutoff Values and Assess the Performance of Predictive Models in Stepwise Regression," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-21, July.
- Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2018. "Variable Selection in Causal Inference using a Simultaneous Penalization Method," Journal of Causal Inference, De Gruyter, vol. 6(1), pages 1-16, March.
- van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
- Zhang, Yongli & Yang, Yuhong, 2015. "Cross-validation for selecting a model selection procedure," Journal of Econometrics, Elsevier, vol. 187(1), pages 95-112.
- Zulj, Valentin & Jin, Shaobo, 2024. "Can model averaging improve propensity score based estimation of average treatment effects?," Working Paper Series 2024:1, IFAU - Institute for Evaluation of Labour Market and Education Policy.
- van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
- Díaz Muñoz Iván & van der Laan Mark J., 2011. "Super Learner Based Conditional Density Estimation with Application to Marginal Structural Models," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-20, October.
- Raymond Salvador & Joaquim Radua & Erick J Canales-Rodríguez & Aleix Solanes & Salvador Sarró & José M Goikolea & Alicia Valiente & Gemma C Monté & María del Carmen Natividad & Amalia Guerrero-Pedraza, 2017. "Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-24, April.
- Neugebauer Romain & Chandra Malini & Paredes Antonio & J. Graham David & McCloskey Carolyn & S. Go Alan, 2013. "A Marginal Structural Modeling Approach with Super Learning for a Study on Oral Bisphosphonate Therapy and Atrial Fibrillation," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 21-50, June.
- I Díaz & O Savenkov & K Ballman, 2018. "Targeted learning ensembles for optimal individualized treatment rules with time-to-event outcomes," Biometrika, Biometrika Trust, vol. 105(3), pages 723-738.
- Zihao Li & Hui Lan & Vasilis Syrgkanis & Mengdi Wang & Masatoshi Uehara, 2024. "Regularized DeepIV with Model Selection," Papers 2403.04236, arXiv.org.
- van der Laan Mark J. & Gruber Susan, 2012. "Targeted Minimum Loss Based Estimation of Causal Effects of Multiple Time Point Interventions," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-41, May.
- Verhagen, Mark D., 2021. "Identifying and Improving Functional Form Complexity: A Machine Learning Framework," SocArXiv bka76, Center for Open Science.
- Hind A. Beydoun & May A. Beydoun & Brook T. Alemu & Jordan Weiss & Sharmin Hossain & Rana S. Gautam & Alan B. Zonderman, 2022. "Determinants of COVID-19 Outcome as Predictors of Delayed Healthcare Services among Adults ≥50 Years during the Pandemic: 2006–2020 Health and Retirement Study," IJERPH, MDPI, vol. 19(19), pages 1-24, September.
- Tasquia Mizan & Sharareh Taghipour, 2021. "A causal model for short‐term time series analysis to predict incoming Medicare workload," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 228-242, March.
More about this item
Keywords
viscosity; PVT properties; dead oil viscosity; machine learning; SuperLearner;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:930-:d:497223. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.