IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v24y2006i3p23n4.html
   My bibliography  Save this article

The cross-validated adaptive epsilon-net estimator

Author

Listed:
  • Laan Mark J. van der
  • Dudoit Sandrine
  • Vaart Aad W. van der

Abstract

Suppose that we observe a sample of independent and identically distributed realizations of a random variable, and a parameter of interest can be defined as the minimizer, over a suitably defined parameter set, of the expectation of a (loss) function of a candidate parameter value and the random variable. For example, squared error loss in regression or the negative log-density loss in density estimation. Minimizing the empirical risk (i.e., the empirical mean of the loss function) over the entire parameter set may result in ill-defined or too variable estimators of the parameter of interest. In this article, we propose a cross-validated ε-net estimation method, which uses a collection of submodels and a collection of ε-nets over each submodel. For each submodel s and each resolution level ε, the minimizer of the empirical risk over the corresponding ε-net is a candidate estimator. Next we select from these estimators (i.e. select the pair (s,ε)) by multi-fold cross-validation. We derive a finite sample inequality that shows that the resulting estimator is as good as an oracle estimator that uses the best submodel and resolution level for the unknown true parameter. We also address the implementation of the estimation procedure, and in the context of a linear regression model we present results of a preliminary simulation study comparing the cross-validated ε-net estimator to the cross-validated L1-penalized least squares estimator (LASSO) and the least angle regression estimator (LARS).

Suggested Citation

  • Laan Mark J. van der & Dudoit Sandrine & Vaart Aad W. van der, 2006. "The cross-validated adaptive epsilon-net estimator," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 373-395, December.
  • Handle: RePEc:bpj:strimo:v:24:y:2006:i:3:p:23:n:4
    DOI: 10.1524/stnd.2006.24.3.373
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.2006.24.3.373
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.2006.24.3.373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vaart Aad W. van der & Dudoit Sandrine & Laan Mark J. van der, 2006. "Oracle inequalities for multi-fold cross validation," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 351-371, December.
    2. Jean–Michel Loubes & Sara Van De Geer, 2002. "Adaptive estimation with soft thresholding penalties," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(4), pages 453-478, November.
    3. Sandrine Dudoit & Mark van der Laan & Sunduz Keles & Annette Molinaro & Sandra Sinisi & Siew Leng Teng, 2004. "Loss-Based Estimation with Cross-Validation: Applications to Microarray Data Analysis and Motif Finding," U.C. Berkeley Division of Biostatistics Working Paper Series 1136, Berkeley Electronic Press.
    4. Molinaro, Annette M. & Dudoit, Sandrine & van der Laan, M.J.Mark J., 2004. "Tree-based multivariate regression and density estimation with right-censored data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 154-177, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    2. Narayanaswamy Balakrishnan & Majid Mojirsheibani, 2015. "A simple method for combining estimates to improve the overall error rates in classification," Computational Statistics, Springer, vol. 30(4), pages 1033-1049, December.
    3. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    4. I Díaz & O Savenkov & K Ballman, 2018. "Targeted learning ensembles for optimal individualized treatment rules with time-to-event outcomes," Biometrika, Biometrika Trust, vol. 105(3), pages 723-738.
    5. van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
    6. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2015. "Tree-based censored regression with applications to insurance," Working Papers hal-01141228, HAL.
    7. Qingfeng Liu & Yang Feng, 2021. "Machine Collaboration," Papers 2105.02569, arXiv.org, revised Feb 2024.
    8. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01141228, HAL.
    9. Vaart Aad W. van der & Dudoit Sandrine & Laan Mark J. van der, 2006. "Oracle inequalities for multi-fold cross validation," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 351-371, December.
    10. Goldsmith, Jeff & Scheipl, Fabian, 2014. "Estimator selection and combination in scalar-on-function regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 362-372.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2015. "Tree-based censored regression with applications to insurance," Working Papers hal-01141228, HAL.
    2. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01141228, HAL.
    3. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    4. Fahimeh Hadavimoghaddam & Mehdi Ostadhassan & Ehsan Heidaryan & Mohammad Ali Sadri & Inna Chapanova & Evgeny Popov & Alexey Cheremisin & Saeed Rafieepour, 2021. "Prediction of Dead Oil Viscosity: Machine Learning vs. Classical Correlations," Energies, MDPI, vol. 14(4), pages 1-16, February.
    5. Yan Zhou & John McArdle, 2015. "Rationale and Applications of Survival Tree and Survival Ensemble Methods," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 811-833, September.
    6. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    7. Mahmood Zafar & Khan Salahuddin, 2009. "On the Use of K-Fold Cross-Validation to Choose Cutoff Values and Assess the Performance of Predictive Models in Stepwise Regression," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-21, July.
    8. Susan Athey & Julie Tibshirani & Stefan Wager, 2016. "Generalized Random Forests," Papers 1610.01271, arXiv.org, revised Apr 2018.
    9. van der Laan Mark J., 2010. "Targeted Maximum Likelihood Based Causal Inference: Part I," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-45, February.
    10. Zhang, Yongli & Yang, Yuhong, 2015. "Cross-validation for selecting a model selection procedure," Journal of Econometrics, Elsevier, vol. 187(1), pages 95-112.
    11. Sinisi Sandra E. & Neugebauer Romain & van der Laan Mark J., 2006. "Cross-Validated Bagged Prediction of Survival," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-26, May.
    12. van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
    13. Díaz Muñoz Iván & van der Laan Mark J., 2011. "Super Learner Based Conditional Density Estimation with Application to Marginal Structural Models," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-20, October.
    14. Alina Schenk & Moritz Berger & Matthias Schmid, 2024. "Pseudo-value regression trees," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(2), pages 439-471, April.
    15. I Díaz & O Savenkov & K Ballman, 2018. "Targeted learning ensembles for optimal individualized treatment rules with time-to-event outcomes," Biometrika, Biometrika Trust, vol. 105(3), pages 723-738.
    16. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    17. Molinaro, Annette M. & Dudoit, Sandrine & van der Laan, M.J.Mark J., 2004. "Tree-based multivariate regression and density estimation with right-censored data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 154-177, July.
    18. Jhong, Jae-Hwan & Koo, Ja-Yong, 2019. "Simultaneous estimation of quantile regression functions using B-splines and total variation penalty," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 228-244.
    19. Zihao Li & Hui Lan & Vasilis Syrgkanis & Mengdi Wang & Masatoshi Uehara, 2024. "Regularized DeepIV with Model Selection," Papers 2403.04236, arXiv.org.
    20. Mark van der Laan & Sandrine Dudoit & Aad van der Vaart, 2004. "The Cross-Validated Adaptive Epsilon-Net Estimator," U.C. Berkeley Division of Biostatistics Working Paper Series 1141, Berkeley Electronic Press.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:24:y:2006:i:3:p:23:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.