IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v20y2016i1p97-105n5.html
   My bibliography  Save this article

Selecting the tuning parameter of the ℓ1 trend filter

Author

Listed:
  • Yamada Hiroshi

    (Department of Economics, Hiroshima University, 1-2-1 Kagamiyama, Higashi-Hiroshima 739-8525, Japan)

  • Yoon Gawon

    (Department of Economics, Kookmin University, 136–702, S. Korea)

Abstract

The ℓ1 trend filter, which is similar to the popular Hodrick–Prescott (HP) filter, seems to be very promising because it enables us to estimate a piecewise linear trend without specifying the location and number of kink points a priori. Such a trend may be regarded as a result of occasional permanent shocks to the growth rate. Similarly to the HP filter, the value of the tuning parameter needs to be selected in applying this filter. This paper proposes a method for selecting the tuning parameter of the ℓ1 trend filter and its generalization.

Suggested Citation

  • Yamada Hiroshi & Yoon Gawon, 2016. "Selecting the tuning parameter of the ℓ1 trend filter," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(1), pages 97-105, February.
  • Handle: RePEc:bpj:sndecm:v:20:y:2016:i:1:p:97-105:n:5
    DOI: 10.1515/snde-2014-0089
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2014-0089
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2014-0089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
    2. Yamada, Hiroshi & Yoon, Gawon, 2014. "When Grilli and Yang meet Prebisch and Singer: Piecewise linear trends in primary commodity prices," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 193-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroshi Yamada & Ruixue Du, 2018. "Some Results on ℓ 1 Polynomial Trend Filtering," Econometrics, MDPI, vol. 6(3), pages 1-10, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoon, Gawon, 2015. "Locating change-points in Hodrick–Prescott trends with an application to US real GDP: A generalized unobserved components model approach," Economic Modelling, Elsevier, vol. 45(C), pages 136-141.
    2. Guérin, Pierre & Maurin, Laurent & Mohr, Matthias, 2015. "Trend-Cycle Decomposition Of Output And Euro Area Inflation Forecasts: A Real-Time Approach Based On Model Combination," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 363-393, March.
    3. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    4. Ascari, Guido & Castelnuovo, Efrem & Rossi, Lorenza, 2011. "Calvo vs. Rotemberg in a trend inflation world: An empirical investigation," Journal of Economic Dynamics and Control, Elsevier, vol. 35(11), pages 1852-1867.
    5. Nooman Rebei & Rashid Sbia, 2021. "Transitory and permanent shocks in the global market for crude oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 1047-1064, November.
    6. Tatsuma Wada & Pierre Perron, 2006. "State Space Model with Mixtures of Normals: Specifications and Applications to International Data," Boston University - Department of Economics - Working Papers Series WP2006-029, Boston University - Department of Economics.
    7. Bruns, Stephan B. & König, Johannes & Stern, David I., 2019. "Replication and robustness analysis of ‘energy and economic growth in the USA: A multivariate approach’," Energy Economics, Elsevier, vol. 82(C), pages 100-113.
    8. Fernandez, Viviana, 2019. "A readily computable commodity price index: 1900–2016," Finance Research Letters, Elsevier, vol. 31(C).
    9. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.
    10. Enders, Walter & Li, Jing, 2015. "Trend-cycle decomposition allowing for multiple smooth structural changes in the trend of US real GDP," Journal of Macroeconomics, Elsevier, vol. 44(C), pages 71-81.
    11. Sui Luo & Yu‐Fan Huang & Richard Startz, 2021. "Are Recoveries all the Same: GDP and TFP?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(5), pages 1111-1129, October.
    12. Marlon Fritz & Thomas Gries & Yuanhua Feng, 2019. "Growth Trends and Systematic Patterns of Booms and Busts‐Testing 200 Years of Business Cycle Dynamics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(1), pages 62-78, February.
    13. Mardi Dungey & Jan P.A.M. Jacobs & Jing Tian, 2017. "Forecasting output gaps in the G-7 countries: the role of correlated innovations and structural breaks," Applied Economics, Taylor & Francis Journals, vol. 49(45), pages 4554-4566, September.
    14. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    15. Pierre Perron & Francisco Estrada & Carlos Gay-García & Benjamín Martínez-López, 2011. "A time-series analysis of the 20th century climate simulations produced for the IPCC’s AR4," Boston University - Department of Economics - Working Papers Series WP2011-051, Boston University - Department of Economics.
    16. Jaeho Kim & Sora Chon, 2020. "Why are Bayesian trend-cycle decompositions of US real GDP so different?," Empirical Economics, Springer, vol. 58(3), pages 1339-1354, March.
    17. Castillo, Luis & Florián, David, 2019. "Measuring the output gap, potential output growth and natural interest rate from a semi-structural dynamic model for Peru," Working Papers 2019-012, Banco Central de Reserva del Perú.
    18. Gabriel Rodríguez & Roxana Tramontana Tocto, 2015. "Application of a Short Memory Model With Random Level Shifts to the Volatility of Latin American Stock Market Returns," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 52(2), pages 185-211, November.
    19. Philippe Bacchetta & Eric Van Wincoop, 2006. "Incomplete information processing: a solution to the forward discount puzzle," Proceedings, Federal Reserve Bank of San Francisco, issue Jun.
    20. Tobias Hartl & Rolf Tschernig & Enzo Weber, 2020. "Fractional trends and cycles in macroeconomic time series," Papers 2005.05266, arXiv.org, revised May 2020.

    More about this item

    Keywords

    Hodrick–Prescott filter; lasso; ℓ1 trend filter; sparsity; tuning parameter;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:20:y:2016:i:1:p:97-105:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.