IDEAS home Printed from https://ideas.repec.org/a/eee/jmacro/v44y2015icp71-81.html
   My bibliography  Save this article

Trend-cycle decomposition allowing for multiple smooth structural changes in the trend of US real GDP

Author

Listed:
  • Enders, Walter
  • Li, Jing

Abstract

A key feature of Flexible Fourier Form (FFF) is that the essential characteristics of multiple structural changes can be captured using a small number of low frequency components from a Fourier approximation. We introduce a variant of the FFF into the trend function of US real GDP in order to allow for gradual effects of unknown numbers of structural changes occurring at unknown dates. We find that the hypothesis of no changes can be rejected, and the Fourier components are significant. Our new cycle matches the NBER chronology very well, especially for the Great Recession of 2009.

Suggested Citation

  • Enders, Walter & Li, Jing, 2015. "Trend-cycle decomposition allowing for multiple smooth structural changes in the trend of US real GDP," Journal of Macroeconomics, Elsevier, vol. 44(C), pages 71-81.
  • Handle: RePEc:eee:jmacro:v:44:y:2015:i:c:p:71-81
    DOI: 10.1016/j.jmacro.2015.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0164070415000257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmacro.2015.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
    2. Arabinda Basistha, 2007. "Trend‐cycle correlation, drift break and the estimation of trend and cycle in Canadian GDP," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(2), pages 584-606, May.
    3. Kim, Chang-Jin & Nelson, Charles R, 1999. "Friedman's Plucking Model of Business Fluctuations: Tests and Estimates of Permanent and Transitory Components," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 31(3), pages 317-334, August.
    4. Gallant, A. Ronald & Souza, Geraldo, 1991. "On the asymptotic normality of Fourier flexible form estimates," Journal of Econometrics, Elsevier, vol. 50(3), pages 329-353, December.
    5. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    6. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    7. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    8. Basu, Susanto & Fernald, John G. & Shapiro, Matthew D., 2001. "Productivity growth in the 1990s: technology, utilization, or adjustment?," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 55(1), pages 117-165, December.
    9. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    10. Walter Enders & Junsoo Lee, 2012. "A Unit Root Test Using a Fourier Series to Approximate Smooth Breaks," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(4), pages 574-599, August.
    11. James Morley & Irina B. Panovska & Tara M. Sinclair, 2013. "Testing Stationarity for Unobserved Components Models," Discussion Papers 2012-41A, School of Economics, The University of New South Wales.
    12. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    13. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    14. Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 797-814.
    15. Ralf Becker & Walter Enders & Junsoo Lee, 2006. "A Stationarity Test in the Presence of an Unknown Number of Smooth Breaks," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(3), pages 381-409, May.
    16. Hillebrand, Eric, 2005. "Neglecting parameter changes in GARCH models," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 121-138.
    17. James Morley & Irina B. Panovska & Tara M. Sinclair, 2014. "Testing Stationarity for Unobserved Components Models," Discussion Papers 2012-41B, School of Economics, The University of New South Wales.
    18. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 395-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Chang & Katchova, Ani L., 2019. "Predicting Soybean Yield with NDVI Using a Flexible Fourier Transform Model," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 51(3), pages 402-416, August.
    2. Magdalena Osińska & Tadeusz Kufel & Marcin Błażejowski & Paweł Kufel, 2020. "Modeling mechanism of economic growth using threshold autoregression models," Empirical Economics, Springer, vol. 58(3), pages 1381-1430, March.
    3. Banerjee, Piyali & Arčabić, Vladimir & Lee, Hyejin, 2017. "Fourier ADL cointegration test to approximate smooth breaks with new evidence from Crude Oil Market," Economic Modelling, Elsevier, vol. 67(C), pages 114-124.
    4. Éva Gyurkovics & Tibor Takács, 2023. "Estimation of the potential GDP by a new robust filter method," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1183-1207, December.
    5. Luo, Shikong & Yan, Xinyan & Yang, Haoyi, 2021. "Let’s take a smooth break: Stock return predictability revisited," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 300-314.
    6. Gyurkovics, Éva & Takács, Tibor, 2022. "Robust energy-to-peak filter design for a class of unstable polytopic systems with a macroeconomic application," Applied Mathematics and Computation, Elsevier, vol. 420(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ángel Guillén & Gabriel Rodríguez, 2014. "Trend-cycle decomposition for Peruvian GDP: application of an alternative method," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 23(1), pages 1-44, December.
    2. T. Berger, 2008. "Estimating Europe’s Natural Rates from a forward-looking Phillips curve," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/498, Ghent University, Faculty of Economics and Business Administration.
    3. Teterin, Pavel & Brooks, Robert & Enders, Walter, 2016. "Smooth volatility shifts and spillovers in U.S. crude oil and corn futures markets," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 22-36.
    4. Morana, Claudio, 2024. "A new macro-financial condition index for the euro area," Econometrics and Statistics, Elsevier, vol. 29(C), pages 64-87.
    5. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    6. Tatsuma Wada & Pierre Perron, 2006. "State Space Model with Mixtures of Normals: Specifications and Applications to International Data," Boston University - Department of Economics - Working Papers Series WP2006-029, Boston University - Department of Economics.
    7. Sinclair Tara M, 2009. "Asymmetry in the Business Cycle: Friedman's Plucking Model with Correlated Innovations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(1), pages 1-31, December.
    8. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    9. Blonigen, Bruce A. & Piger, Jeremy & Sly, Nicholas, 2014. "Comovement in GDP trends and cycles among trading partners," Journal of International Economics, Elsevier, vol. 94(2), pages 239-247.
    10. Tino Berger, 2011. "Estimating Europe’s natural rates," Empirical Economics, Springer, vol. 40(2), pages 521-536, April.
    11. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    12. Fritz, Marlon, 2019. "Steady state adjusting trends using a data-driven local polynomial regression," Economic Modelling, Elsevier, vol. 83(C), pages 312-325.
    13. Han, Yang & Liu, Zehao & Ma, Jun, 2020. "Growth cycles and business cycles of the Chinese economy through the lens of the unobserved components model," China Economic Review, Elsevier, vol. 63(C).
    14. Martin B. Schmidt, 2021. "On the evolution of athlete anthropometric measurements: racial integration, expansion, and steroids," Empirical Economics, Springer, vol. 61(6), pages 3419-3443, December.
    15. Angelia L. Grant & Joshua C.C. Chan, 2017. "A Bayesian Model Comparison for Trend‐Cycle Decompositions of Output," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(2-3), pages 525-552, March.
    16. Tatsuma Wada & Pierre Perron, 2005. "An Alternative Trend-Cycle Decomposition using a State Space Model with Mixtures of Normals: Specifications and Applications to International Data," Boston University - Department of Economics - Working Papers Series WP2005-44, Boston University - Department of Economics.
    17. James Morley, 2014. "Measuring Economic Slack: A Forecast-Based Approach with Applications to Economies in Asia and the Pacific," BIS Working Papers 451, Bank for International Settlements.
    18. Mitra, Sinchan & Sinclair, Tara M., 2012. "Output Fluctuations In The G-7: An Unobserved Components Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 16(3), pages 396-422, June.
    19. Agbeyegbe, Terence D., 2020. "Bayesian analysis of output gap in Barbados," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    20. Furkan Emirmahmutoglu & Tolga Omay & Syed Jawad Hussain Shahzad & Safwan Mohd Nor, 2021. "Smooth Break Detection and De-Trending in Unit Root Testing," Mathematics, MDPI, vol. 9(4), pages 1-25, February.

    More about this item

    Keywords

    Trend-cycle decomposition; Flexible Fourier form; Smooth structural changes;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmacro:v:44:y:2015:i:c:p:71-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622617 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.