IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v15y2011i4n1.html
   My bibliography  Save this article

Early Detection Techniques for Market Risk Failure

Author

Listed:
  • Olmo Jose

    (Centro Universitario de la Defensa de Zaragoza and City University London)

  • Pouliot William

    (University of Liverpool)

Abstract

The implementation of appropriate statistical techniques (backtesting) for monitoring conditional VaR models is the mechanism used by financial institutions to determine the severity of departures of the VaR model from market results and subsequently, the tool used by regulators to determine the penalties imposed for inadequate risk models. So far, however, there has been no attempt to determine the timing of this rejection and with it to obtain some guidance regarding the cause of failure in reporting an appropriate VaR. This paper corrects this by proposing U-statistic type processes that extend standard CUSUM statistics widely employed for change-point detection. In contrast to CUSUM statistics these new tests are indexed by certain weight functions that enhance their statistical power to detect the timing of the market risk model failure. These tests are robust to estimation risk and can be devised to be very sensitive to detection of market failure produced early in the out-of-sample evaluation period, in which standard methods usually fail due to the absence of data.

Suggested Citation

  • Olmo Jose & Pouliot William, 2011. "Early Detection Techniques for Market Risk Failure," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-55, September.
  • Handle: RePEc:bpj:sndecm:v:15:y:2011:i:4:n:1
    DOI: 10.2202/1558-3708.1800
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1558-3708.1800
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1558-3708.1800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Altissimo, Filippo & Corradi, Valentina, 2003. "Strong rules for detecting the number of breaks in a time series," Journal of Econometrics, Elsevier, vol. 117(2), pages 207-244, December.
    2. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    3. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    4. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    5. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    6. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    7. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    8. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    9. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
    10. Gombay Edit & Horváth Lajos & Husková Marie, 1996. "Estimators And Tests For Change In Variances," Statistics & Risk Modeling, De Gruyter, vol. 14(2), pages 145-160, February.
    11. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    12. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    13. Leisch, Friedrich & Hornik, Kurt & Kuan, Chung-Ming, 2000. "Monitoring Structural Changes With The Generalized Fluctuation Test," Econometric Theory, Cambridge University Press, vol. 16(6), pages 835-854, December.
    14. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    15. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    16. McCabe, B.P.M., 1988. "A Multiple Decision Theory Analysis of Structural Stability in Regression," Econometric Theory, Cambridge University Press, vol. 4(3), pages 499-508, December.
    17. Csörgo, Miklós & Horváth, Lajos, 1988. "Invariance principles for changepoint problems," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 151-168, October.
    18. J. Carlos Escanciano & Jose Olmo, 2011. "Robust Backtesting Tests for Value-at-risk Models," Journal of Financial Econometrics, Oxford University Press, vol. 9(1), pages 132-161, Winter.
    19. Ploberger, Werner & Kramer, Walter & Kontrus, Karl, 1989. "A new test for structural stability in the linear regression model," Journal of Econometrics, Elsevier, vol. 40(2), pages 307-318, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pouliot, William, 2016. "Robust tests for change in intercept and slope in linear regression models with application to manager performance in the mutual fund industry," Economic Modelling, Elsevier, vol. 58(C), pages 523-534.
    2. Pouliot, W. & Olmo, J., 2008. "U-statistic Type Tests for Structural Breaks in Linear Regression Models," Working Papers 08/15, Department of Economics, City University London.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escanciano, J. Carlos & Olmo, Jose, 2010. "Backtesting Parametric Value-at-Risk With Estimation Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 36-51.
    2. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," JRFM, MDPI, vol. 9(3), pages 1-20, September.
    3. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    4. Sander Barendse & Erik Kole & Dick van Dijk, 2023. "Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 528-568.
    5. Fuertes, Ana-Maria & Olmo, Jose, 2013. "Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction," International Journal of Forecasting, Elsevier, vol. 29(1), pages 28-42.
    6. Jose Olmo & William Pouliot, 2014. "Tests to Disentangle Breaks in Intercept from Slope in Linear Regression Models with Application to Management Performance in the Mutual Fund Industry," Discussion Papers 14-02, Department of Economics, University of Birmingham.
    7. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    8. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    9. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    10. Burcu Kapar & William Pouliot, 2013. "Multiple Change-Point Detection in Linear Regression Models via U-Statistic Type Processes," Discussion Papers 13-13, Department of Economics, University of Birmingham.
    11. Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2014. "Risk Assessment of the Brazilian FX Rate," Working Papers Series 344, Central Bank of Brazil, Research Department.
    12. Şener, Emrah & Baronyan, Sayad & Ali Mengütürk, Levent, 2012. "Ranking the predictive performances of value-at-risk estimation methods," International Journal of Forecasting, Elsevier, vol. 28(4), pages 849-873.
    13. Xiaochun Liu, 2016. "Markov switching quantile autoregression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
    14. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    15. Jack Fosten & Daniel Gutknecht & Marc-Oliver Pohle, 2023. "Testing Quantile Forecast Optimality," Papers 2302.02747, arXiv.org, revised Oct 2023.
    16. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    17. André A. P. Santos & Francisco J. Nogales & Esther Ruiz, 2013. "Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 400-441, March.
    18. Ghysels, Eric & Liu, Hanwei, 2017. "Downside Risk in the Chinese Stock Market - Has it Fundamentally Changed?," CEPR Discussion Papers 12180, C.E.P.R. Discussion Papers.
    19. DeRossi, G. & Harvey, A., 2006. "Time-Varying Quantiles," Cambridge Working Papers in Economics 0649, Faculty of Economics, University of Cambridge.
    20. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:15:y:2011:i:4:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.