IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v58y2016icp523-534.html
   My bibliography  Save this article

Robust tests for change in intercept and slope in linear regression models with application to manager performance in the mutual fund industry

Author

Listed:
  • Pouliot, William

Abstract

Financial as well as economic theory have developed models which can be used to evaluate performance of mutual funds and that can assist regulators in monitoring performance of financial markets. These models make use of linear regressions models to provide this information. In particular, interest lies with the intercept parameter of these models and whether it is time varying. In applications to mutual fund performance, time varying alpha indicates a change in manager's stock selecting abilities. In applications to regulation of financial markets, time-varying alpha indicates potential changes to equity returns based on undisclosed information. These are importance concerns and emphasize the need to have accurate methods to disentangle changes in intercept from slope in these models. Here, a novel bivariate statistic is developed that can be used for this purpose. It has many attractive features. For example, the use of weight functions improves its power for discrete changes in intercept/slope that occur late/early in the sample, allows intercept/slope to change at different dates, allows for control of global error rates; and avoids trimming.

Suggested Citation

  • Pouliot, William, 2016. "Robust tests for change in intercept and slope in linear regression models with application to manager performance in the mutual fund industry," Economic Modelling, Elsevier, vol. 58(C), pages 523-534.
  • Handle: RePEc:eee:ecmode:v:58:y:2016:i:c:p:523-534
    DOI: 10.1016/j.econmod.2016.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999316300621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2016.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ploberger, Werner & Krämer;, Walter, 1990. "The Local Power of the CUSUM and CUSUM of Squares Tests," Econometric Theory, Cambridge University Press, vol. 6(3), pages 335-347, September.
    2. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    3. Michael C. Jensen, 1968. "The Performance Of Mutual Funds In The Period 1945–1964," Journal of Finance, American Finance Association, vol. 23(2), pages 389-416, May.
    4. Laurent Barras & Olivier Scaillet & Russ Wermers, 2010. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
    5. Alexander Aue & Lajos Horváth, 2013. "Structural breaks in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 1-16, January.
    6. Gombay, Edit, 2008. "Change detection in autoregressive time series," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 451-464, March.
    7. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    8. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    9. Jushan Bai & Pierre Perron, 2003. "Critical values for multiple structural change tests," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 72-78, June.
    10. Jonathan B. Berk & Richard C. Green, 2004. "Mutual Fund Flows and Performance in Rational Markets," Journal of Political Economy, University of Chicago Press, vol. 112(6), pages 1269-1295, December.
    11. Donald W. K. Andrews, 2003. "Tests for Parameter Instability and Structural Change with Unknown Change Point: A Corrigendum," Econometrica, Econometric Society, vol. 71(1), pages 395-397, January.
    12. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    13. Hansen, Bruce E., 1992. "Testing for parameter instability in linear models," Journal of Policy Modeling, Elsevier, vol. 14(4), pages 517-533, August.
    14. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    15. Dufour, Jean-Marie, 1982. "Recursive stability analysis of linear regression relationships: An exploratory methodology," Journal of Econometrics, Elsevier, vol. 19(1), pages 31-76, May.
    16. Ferson, Wayne E & Schadt, Rudi W, 1996. "Measuring Fund Strategy and Performance in Changing Economic Conditions," Journal of Finance, American Finance Association, vol. 51(2), pages 425-461, June.
    17. Altissimo, Filippo & Corradi, Valentina, 2003. "Strong rules for detecting the number of breaks in a time series," Journal of Econometrics, Elsevier, vol. 117(2), pages 207-244, December.
    18. Berk, Jonathan B. & van Binsbergen, Jules H., 2015. "Measuring skill in the mutual fund industry," Journal of Financial Economics, Elsevier, vol. 118(1), pages 1-20.
    19. Gombay, Edit & Horváth, Lajos, 1994. "Limit theorems for change in linear regression," Journal of Multivariate Analysis, Elsevier, vol. 48(1), pages 43-69, January.
    20. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    21. Kramer, Walter & Ploberger, Werner & Alt, Raimund, 1988. "Testing for Structural Change in Dynamic Models," Econometrica, Econometric Society, vol. 56(6), pages 1355-1369, November.
    22. Dennis Kristensen, 2012. "Non‐parametric detection and estimation of structural change," Econometrics Journal, Royal Economic Society, vol. 15(3), pages 420-461, October.
    23. Olmo Jose & Pouliot William, 2011. "Early Detection Techniques for Market Risk Failure," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-55, September.
    24. Olmo, Jose & Pilbeam, Keith & Pouliot, William, 2011. "Detecting the presence of insider trading via structural break tests," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2820-2828, November.
    25. Leisch, Friedrich & Hornik, Kurt & Kuan, Chung-Ming, 2000. "Monitoring Structural Changes With The Generalized Fluctuation Test," Econometric Theory, Cambridge University Press, vol. 16(6), pages 835-854, December.
    26. Lajos Horváth & Gregory Rice, 2014. "Rejoinder on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 287-290, June.
    27. Gombay, Edit & Horváth, Lajos, 1996. "On the Rate of Approximations for Maximum Likelihood Tests in Change-Point Models," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 120-152, January.
    28. Eugene F. Fama & Kenneth R. French, 2010. "Luck versus Skill in the Cross‐Section of Mutual Fund Returns," Journal of Finance, American Finance Association, vol. 65(5), pages 1915-1947, October.
    29. Jose Olmo & William Pouliot, 2014. "Tests to Disentangle Breaks in Intercept from Slope in Linear Regression Models with Application to Management Performance in the Mutual Fund Industry," Discussion Papers 14-02, Department of Economics, University of Birmingham.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christos Argyropoulos & Bertrand Candelon & Jean‐Baptiste Hasse & Ekaterini Panopoulou, 2024. "Towards a macroprudential regulatory framework for mutual funds?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3063-3082, July.
    2. Huang, Rong & Pilbeam, Keith & Pouliot, William, 2021. "Do actively managed US mutual funds produce positive alpha?," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 472-492.
    3. Keith Pilbeam & Hamish Preston, 2019. "An Empirical Investigation of the Performance of Japanese Mutual Funds: Skill or Luck?," IJFS, MDPI, vol. 7(1), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burcu Kapar & William Pouliot, 2013. "Multiple Change-Point Detection in Linear Regression Models via U-Statistic Type Processes," Discussion Papers 13-13, Department of Economics, University of Birmingham.
    2. Jose Olmo & William Pouliot, 2014. "Tests to Disentangle Breaks in Intercept from Slope in Linear Regression Models with Application to Management Performance in the Mutual Fund Industry," Discussion Papers 14-02, Department of Economics, University of Birmingham.
    3. Cai, Biqing & Cheng, Tingting & Yan, Cheng, 2018. "Time-varying skills (versus luck) in U.S. active mutual funds and hedge funds," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 81-106.
    4. Huang, Rong & Pilbeam, Keith & Pouliot, William, 2021. "Do actively managed US mutual funds produce positive alpha?," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 472-492.
    5. Pástor, Ľuboš & Stambaugh, Robert F. & Taylor, Lucian A., 2015. "Scale and skill in active management," Journal of Financial Economics, Elsevier, vol. 116(1), pages 23-45.
    6. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2023. "Testing for changes in linear models using weighted residuals," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    7. Blake, David & Caulfield, Tristan & Ioannidis, Christos & Tonks, Ian, 2014. "Improved inference in the evaluation of mutual fund performance using panel bootstrap methods," Journal of Econometrics, Elsevier, vol. 183(2), pages 202-210.
    8. Abhijit Sharma & Kelvin G Balcombe & Iain M Fraser, 2009. "Non-renewable resource prices: Structural breaks and long term trends," Economics Bulletin, AccessEcon, vol. 29(2), pages 805-819.
    9. Ľuboš Pástor & Robert F. Stambaugh & Lucian A. Taylor, 2017. "Do Funds Make More When They Trade More?," Journal of Finance, American Finance Association, vol. 72(4), pages 1483-1528, August.
    10. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
    11. Makram El-Shagi & Sebastian Giesen, 2013. "Testing for Structural Breaks at Unknown Time: A Steeplechase," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 101-123, January.
    12. Christiansen, Charlotte & Grønborg, Niels S. & Nielsen, Ole L., 2020. "Mutual fund selection for realistically short samples," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 218-240.
    13. Bianchi, Daniele & Babiak, Mykola, 2022. "On the performance of cryptocurrency funds," Journal of Banking & Finance, Elsevier, vol. 138(C).
    14. Pástor, Ľuboš & Stambaugh, Robert F. & Taylor, Lucian A., 2015. "Scale and skill in active management," Journal of Financial Economics, Elsevier, vol. 116(1), pages 23-45.
    15. Keith Pilbeam & Hamish Preston, 2019. "An Empirical Investigation of the Performance of Japanese Mutual Funds: Skill or Luck?," IJFS, MDPI, vol. 7(1), pages 1-16, January.
    16. Huazhu Zhang & Cheng Yan, 2018. "A skeptical appraisal of the bootstrap approach in fund performance evaluation," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 27(2), pages 49-86, May.
    17. Lajos Horváth & William Pouliot & Shixuan Wang, 2017. "Detecting at-Most-m Changes in Linear Regression Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 552-590, July.
    18. Mason, Andrew & Agyei-Ampomah, Sam & Skinner, Frank, 2016. "Realism, skill, and incentives: Current and future trends in investment management and investment performance," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 31-40.
    19. DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
    20. Oleg Glouchakov, 2006. "Joint change point estimation in regression coeffcients and variances of the errors of a linear model," Working Papers 2006_3, York University, Department of Economics.

    More about this item

    Keywords

    Structural break tests; CUSUM tests; Linear regression models; U-statistics; Mutual fund performance;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:58:y:2016:i:c:p:523-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.