IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v9y2010i1n9.html
   My bibliography  Save this article

An Empirical Bayesian Method for Estimating Biological Networks from Temporal Microarray Data

Author

Listed:
  • Rau Andrea

    (Purdue University, INRA AgroParisTech)

  • Jaffrézic Florence

    (INRA AgroParisTech)

  • Foulley Jean-Louis

    (INRA AgroParisTech)

  • Doerge Rebecca W

    (Purdue University)

Abstract

Gene regulatory networks refer to the interactions that occur among genes and other cellular products. The topology of these networks can be inferred from measurements of changes in gene expression over time. However, because the measurement device (i.e., microarrays) typically yields information on thousands of genes over few biological replicates, these systems are quite difficult to elucidate. An approach with proven effectiveness for inferring networks is the Dynamic Bayesian Network. We have developed an iterative empirical Bayesian procedure with a Kalman filter that estimates the posterior distributions of network parameters. We compare our method to similar existing methods on simulated data and real microarray time series data. We find that the proposed method performs comparably on both model-based and data-based simulations in considerably less computational time. The R and C code used to implement the proposed method are publicly available in the R package ebdbNet.

Suggested Citation

  • Rau Andrea & Jaffrézic Florence & Foulley Jean-Louis & Doerge Rebecca W, 2010. "An Empirical Bayesian Method for Estimating Biological Networks from Temporal Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-28, January.
  • Handle: RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:9
    DOI: 10.2202/1544-6115.1513
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1513
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vijayalakshmi S & John A & Sunder R & Senthilkumar Mohan & Sweta Bhattacharya & Rajesh Kaluri & Guang Feng & Usman Tariq, 2020. "Multi-modal prediction of breast cancer using particle swarm optimization with non-dominating sorting," International Journal of Distributed Sensor Networks, , vol. 16(11), pages 15501477209, November.
    2. Scutari, Marco, 2017. "Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimized Implementations in the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i02).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campos, Eduardo Lima & Cysne, Rubens Penha, 2017. "A time-varying fiscal reaction function for Brazil," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 795, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    2. Rodrigo Hakim das Neves, 2020. "Bitcoin pricing: impact of attractiveness variables," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-18, December.
    3. Asghar, Zahid & Abid, Irum, 2007. "Performance of lag length selection criteria in three different situations," MPRA Paper 40042, University Library of Munich, Germany.
    4. Kathryn M. Dominguez, 1991. "Do Exchange Auctions Work? An Examination of the Bolivian Experience," NBER Working Papers 3683, National Bureau of Economic Research, Inc.
    5. Bin Liu & Weifeng Chen & Bo Li & Xiuping Liu, 2022. "Neural Subspace Learning for Surface Defect Detection," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    6. Jacint Balaguer & Manuel Cantavella-Jorda, 2004. "Structural change in exports and economic growth: cointegration and causality analysis for Spain (1961-2000)," Applied Economics, Taylor & Francis Journals, vol. 36(5), pages 473-477.
    7. Muhammad Farooq Arby & Amjad Ali, 2017. "Threshold Inflation in Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 13, pages 1-19.
    8. Ramona Dumitriu & Razvan Stefanescu, 2015. "The Relationship Between Romanian Exports And Economic Growth After The Adhesion To European Union," Risk in Contemporary Economy, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, pages 17-26.
    9. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages C32-C61, 03.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.