IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i11p1550147720971505.html
   My bibliography  Save this article

Multi-modal prediction of breast cancer using particle swarm optimization with non-dominating sorting

Author

Listed:
  • Vijayalakshmi S
  • John A
  • Sunder R
  • Senthilkumar Mohan
  • Sweta Bhattacharya
  • Rajesh Kaluri
  • Guang Feng
  • Usman Tariq

Abstract

Cancer is enlisted as the second leading reason for death across the world wherein almost one person out of six dies of cancer. Breast cancer is one of the most common forms of cancer predominant in women having the second highest mortality rate in the world. Various scientific studies have been conducted to combat this disease, and machine learning approaches have been an extremely popular choice. Particle swarm optimization has been identified as one of the most powerful and efficient technique for the diagnosis of breast cancer guiding physicians towards timely and accurate treatment. It is also pertinent to mention that multi-modal prediction methods are used to make decisions depending upon different scenarios and aspects whereas the non-dominating sorting feature is useful to sort different objects based on differing requirements. The main novelty of this work is multi-modal prediction algorithm for breast cancer prediction is proposed. The work encompasses the use of particle swarm optimization, non-dominating sorting and multi-classifier techniques, namely, k -nearest neighbour method, fast decision tree and kernel density estimation. Finally, Bayes’ theorem is implemented for revising the results to achieve optimum accuracy in the breast cancer prediction. The proposed particle swarm optimization and non-domination sorting with classifier technique model helps to select the most significant features relevant to breast cancer predictions. The selected features design the objective of the problem model. The proposed model is implemented on the WBCD and WDBC breast cancer data sets publicly available from the UCI machine learning data repository. The metrics considered are sensitivity, specificity, accuracy and time complexity. The experimental results of the study using measures such as sensitivity, specificity, accuracy and time complexity. The experimental results of the study are evaluated against the state-of-the-art algorithms, namely, genetic algorithm kernel density estimation and particle swarm optimization kernel density estimation wherein the results justify the superiority of the proposed model.

Suggested Citation

  • Vijayalakshmi S & John A & Sunder R & Senthilkumar Mohan & Sweta Bhattacharya & Rajesh Kaluri & Guang Feng & Usman Tariq, 2020. "Multi-modal prediction of breast cancer using particle swarm optimization with non-dominating sorting," International Journal of Distributed Sensor Networks, , vol. 16(11), pages 15501477209, November.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:11:p:1550147720971505
    DOI: 10.1177/1550147720971505
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720971505
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720971505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rau Andrea & Jaffrézic Florence & Foulley Jean-Louis & Doerge Rebecca W, 2010. "An Empirical Bayesian Method for Estimating Biological Networks from Temporal Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-28, January.
    2. Harshita Patel & Dharmendra Singh Rajput & G Thippa Reddy & Celestine Iwendi & Ali Kashif Bashir & Ohyun Jo, 2020. "A review on classification of imbalanced data for wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 16(4), pages 15501477209, April.
    3. Olvi L. Mangasarian & W. Nick Street & William H. Wolberg, 1995. "Breast Cancer Diagnosis and Prognosis Via Linear Programming," Operations Research, INFORMS, vol. 43(4), pages 570-577, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanfeng Wang & Haohao Wang & Sanyi Li & Lidong Wang, 2022. "Survival Risk Prediction of Esophageal Cancer Based on the Kohonen Network Clustering Algorithm and Kernel Extreme Learning Machine," Mathematics, MDPI, vol. 10(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    2. Yaqiong Cui & Jukka Sirén & Timo Koski & Jukka Corander, 2016. "Simultaneous Predictive Gaussian Classifiers," Journal of Classification, Springer;The Classification Society, vol. 33(1), pages 73-102, April.
    3. B Baesens & C Mues & D Martens & J Vanthienen, 2009. "50 years of data mining and OR: upcoming trends and challenges," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 16-23, May.
    4. Scutari, Marco, 2017. "Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimized Implementations in the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i02).
    5. Sahin, Özge & Czado, Claudia, 2022. "Vine copula mixture models and clustering for non-Gaussian data," Econometrics and Statistics, Elsevier, vol. 22(C), pages 136-158.
    6. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    7. Sung, Bongjung & Lee, Jaeyong, 2023. "Covariance structure estimation with Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    8. Wang, Wan-Lun, 2015. "Mixtures of common t-factor analyzers for modeling high-dimensional data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 223-235.
    9. Wang, Haifeng & Zheng, Bichen & Yoon, Sang Won & Ko, Hoo Sang, 2018. "A support vector machine-based ensemble algorithm for breast cancer diagnosis," European Journal of Operational Research, Elsevier, vol. 267(2), pages 687-699.
    10. Jun-Ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2017. "Calibration of Distributionally Robust Empirical Optimization Models," Papers 1711.06565, arXiv.org, revised May 2020.
    11. West, David & Mangiameli, Paul & Rampal, Rohit & West, Vivian, 2005. "Ensemble strategies for a medical diagnostic decision support system: A breast cancer diagnosis application," European Journal of Operational Research, Elsevier, vol. 162(2), pages 532-551, April.
    12. Michel H. Montoril & Woojin Chang & Brani Vidakovic, 2019. "Wavelet-Based Estimation of Generalized Discriminant Functions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 318-349, December.
    13. Hong Zhang & Shigen Shen & Qiying Cao & Xiaojun Wu & Shaofeng Liu, 2020. "Modeling and analyzing malware diffusion in wireless sensor networks based on cellular automaton," International Journal of Distributed Sensor Networks, , vol. 16(11), pages 15501477209, November.
    14. Giovanni Felici & Klaus Truemper, 2002. "A MINSAT Approach for Learning in Logic Domains," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 20-36, February.
    15. David González-Patiño & Yenny Villuendas-Rey & Magdalena Saldaña-Pérez & Amadeo-José Argüelles-Cruz, 2023. "A Novel Bioinspired Algorithm for Mixed and Incomplete Breast Cancer Data Classification," IJERPH, MDPI, vol. 20(4), pages 1-13, February.
    16. Ashok Kumar P & Shiva Shankar G & Praveen Kumar Reddy Maddikunta & Thippa Reddy Gadekallu & Abdulrahman Al-Ahmari & Mustufa Haider Abidi, 2020. "Location Based Business Recommendation Using Spatial Demand," Sustainability, MDPI, vol. 12(10), pages 1-12, May.
    17. Sexton, Randall S. & Dorsey, Robert E. & Johnson, John D., 1999. "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing," European Journal of Operational Research, Elsevier, vol. 114(3), pages 589-601, May.
    18. W. Art Chaovalitwongse & Ya-Ju Fan & Rajesh C. Sachdeo, 2008. "Novel Optimization Models for Abnormal Brain Activity Classification," Operations Research, INFORMS, vol. 56(6), pages 1450-1460, December.
    19. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    20. Ramazan Ünlü & Petros Xanthopoulos, 2019. "A weighted framework for unsupervised ensemble learning based on internal quality measures," Annals of Operations Research, Springer, vol. 276(1), pages 229-247, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:11:p:1550147720971505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.