IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i6p788-d1353151.html
   My bibliography  Save this article

Sparse Bayesian Neural Networks: Bridging Model and Parameter Uncertainty through Scalable Variational Inference

Author

Listed:
  • Aliaksandr Hubin

    (Bioinformatics and Applied Statistics, Norwegian University of Life Sciences, 1433 Ås, Norway
    Department of Mathematics, University of Oslo, 0316 Oslo, Norway
    Research Administration, Ostfold University College, 1757 Halden, Norway
    Norwegian Computing Center, 0373 Oslo, Norway)

  • Geir Storvik

    (Department of Mathematics, University of Oslo, 0316 Oslo, Norway
    Norwegian Computing Center, 0373 Oslo, Norway)

Abstract

Bayesian neural networks (BNNs) have recently regained a significant amount of attention in the deep learning community due to the development of scalable approximate Bayesian inference techniques. There are several advantages of using a Bayesian approach: parameter and prediction uncertainties become easily available, facilitating more rigorous statistical analysis. Furthermore, prior knowledge can be incorporated. However, the construction of scalable techniques that combine both structural and parameter uncertainty remains a challenge. In this paper, we apply the concept of model uncertainty as a framework for structural learning in BNNs and, hence, make inferences in the joint space of structures/models and parameters. Moreover, we suggest an adaptation of a scalable variational inference approach with reparametrization of marginal inclusion probabilities to incorporate the model space constraints. Experimental results on a range of benchmark datasets show that we obtain comparable accuracy results with the competing models, but based on methods that are much more sparse than ordinary BNNs.

Suggested Citation

  • Aliaksandr Hubin & Geir Storvik, 2024. "Sparse Bayesian Neural Networks: Bridging Model and Parameter Uncertainty through Scalable Variational Inference," Mathematics, MDPI, vol. 12(6), pages 1-28, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:788-:d:1353151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/6/788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/6/788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dobra, Adrian & Hans, Chris & Jones, Beatrix & Nevins, J.R.Joseph R. & Yao, Guang & West, Mike, 2004. "Sparse graphical models for exploring gene expression data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 196-212, July.
    2. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giraud Christophe & Huet Sylvie & Verzelen Nicolas, 2012. "Graph Selection with GGMselect," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-52, February.
    2. Paci, Lucia & Consonni, Guido, 2020. "Structural learning of contemporaneous dependencies in graphical VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Khaled Khatab & Oyelola Adegboye & Taofeeq Ibn Mohammed, 2016. "Social and Demographic Factors Associated with Morbidities in Young Children in Egypt: A Bayesian Geo-Additive Semi-Parametric Multinomial Model," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-10, July.
    4. Lawrence N Kazembe, 2013. "A Bayesian Two Part Model Applied to Analyze Risk Factors of Adult Mortality with Application to Data from Namibia," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    5. Rouven E. Haschka & Helmut Herwartz, 2022. "Endogeneity in pharmaceutical knowledge generation: An instrument‐free copula approach for Poisson frontier models," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(4), pages 942-960, November.
    6. Shuxi Zeng & Elizabeth C. Lange & Elizabeth A. Archie & Fernando A. Campos & Susan C. Alberts & Fan Li, 2023. "A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 197-218, June.
    7. Wang, Hao, 2010. "Sparse seemingly unrelated regression modelling: Applications in finance and econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2866-2877, November.
    8. Rasheed A. Adeyemi & Temesgen Zewotir & Shaun Ramroop, 2016. "Semiparametric Multinomial Ordinal Model to Analyze Spatial Patterns of Child Birth Weight in Nigeria," IJERPH, MDPI, vol. 13(11), pages 1-22, November.
    9. David O'Donnell & Alastair Rushworth & Adrian W. Bowman & E. Marian Scott & Mark Hallard, 2014. "Flexible regression models over river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 47-63, January.
    10. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    11. Chun, Hyonho & Lee, Myung Hee & Fleet, James C. & Oh, Ji Hwan, 2016. "Graphical models via joint quantile regression with component selection," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 162-171.
    12. Tamvada, Jagannadha Pawan, 2010. "The Dynamics of Self-employment in a Developing Country: Evidence from India," MPRA Paper 20042, University Library of Munich, Germany.
    13. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    14. Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
    15. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
    16. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    17. Dongchu Sun & Paul Speckman, 2008. "Bayesian hierarchical linear mixed models for additive smoothing splines," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 499-517, September.
    18. Finn Lindgren & Håvard Rue, 2008. "On the Second‐Order Random Walk Model for Irregular Locations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 691-700, December.
    19. Djeundje, Viani Biatat & Crook, Jonathan, 2019. "Identifying hidden patterns in credit risk survival data using Generalised Additive Models," European Journal of Operational Research, Elsevier, vol. 277(1), pages 366-376.
    20. Villers Fanny & Schaeffer Brigitte & Bertin Caroline & Huet Sylvie, 2008. "Assessing the Validity Domains of Graphical Gaussian Models in Order to Infer Relationships among Components of Complex Biological Systems," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(2), pages 1-37, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:6:p:788-:d:1353151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.