IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v7y2008i1n14.html
   My bibliography  Save this article

Re-Cracking the Nucleosome Positioning Code

Author

Listed:
  • Segal Mark R

    (University of California, San Francisco)

Abstract

Nucleosomes, the fundamental repeating subunits of all eukaryotic chromatin, are responsible for packaging DNA into chromosomes inside the cell nucleus and controlling gene expression. While it has been well established that nucleosomes exhibit higher affinity for select DNA sequences, until recently it was unclear whether such preferences exerted a significant, genome-wide effect on nucleosome positioning in vivo. This question was seemingly and recently resolved in the affirmative: a wide-ranging series of experimental and computational analyses provided extensive evidence that the instructions for wrapping DNA around nucleosomes are contained in the DNA itself. This subsequently labeled second genetic code was based on data-driven, structural, and biophysical considerations. It was subjected to an extensive suite of validation procedures, with one conclusion being that intrinsic, genome-encoded, nucleosome organization explains approximately 50% of in vivo nucleosome positioning. Here, we revisit both the nature of the underlying sequence preferences, and the performance of the proposed code. A series of new analyses, employing spectral envelope (Fourier transform) methods for assessing key sequence periodicities, classification techniques for evaluating predictive performance, and discriminatory motif finding methods for devising alternate models, are applied. The findings from the respective analyses indicate that signature dinucleotide periodicities are absent from the bulk of the high affinity nucleosome-bound sequences, and that the predictive performance of the code is modest. We conclude that further exploration of the role of sequence-based preferences in genome-wide nucleosome positioning is warranted. This work offers a methodologic counterpart to a recent, high resolution determination of nucleosome positioning that also questions the accuracy of the proposed code and, further, provides illustrations of techniques useful in assessing sequence periodicity and predictive performance.

Suggested Citation

  • Segal Mark R, 2008. "Re-Cracking the Nucleosome Positioning Code," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-24, April.
  • Handle: RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:14
    DOI: 10.2202/1544-6115.1367
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1367
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ori Rosen & David S. Stoffer, 2007. "Automatic estimation of multivariate spectra via smoothing splines," Biometrika, Biometrika Trust, vol. 94(2), pages 335-345.
    2. Timothy J. Richmond & Curt A. Davey, 2003. "The structure of DNA in the nucleosome core," Nature, Nature, vol. 423(6936), pages 145-150, May.
    3. Da Jia & Renata Z. Jurkowska & Xing Zhang & Albert Jeltsch & Xiaodong Cheng, 2007. "Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation," Nature, Nature, vol. 449(7159), pages 248-251, September.
    4. Collins Krista & Gu Hong & Field Chris, 2006. "Examining Protein Structure and Similarities by Spectral Analysis Technique," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-23, September.
    5. Eran Segal & Yvonne Fondufe-Mittendorf & Lingyi Chen & AnnChristine Thåström & Yair Field & Irene K. Moore & Ji-Ping Z. Wang & Jonathan Widom, 2006. "A genomic code for nucleosome positioning," Nature, Nature, vol. 442(7104), pages 772-778, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji-Ping Wang & Yvonne Fondufe-Mittendorf & Liqun Xi & Guei-Feng Tsai & Eran Segal & Jonathan Widom, 2008. "Preferentially Quantized Linker DNA Lengths in Saccharomyces cerevisiae," PLOS Computational Biology, Public Library of Science, vol. 4(9), pages 1-10, September.
    2. Zing Tsung-Yeh Tsai & Shin-Han Shiu & Huai-Kuang Tsai, 2015. "Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-22, August.
    3. Michaël Noë & Dimitrios Mathios & Akshaya V. Annapragada & Shashikant Koul & Zacharia H. Foda & Jamie E. Medina & Stephen Cristiano & Christopher Cherry & Daniel C. Bruhm & Noushin Niknafs & Vilmos Ad, 2024. "DNA methylation and gene expression as determinants of genome-wide cell-free DNA fragmentation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Shibin Zhang, 2022. "Automatic estimation of spatial spectra via smoothing splines," Computational Statistics, Springer, vol. 37(2), pages 565-590, April.
    5. Xinyi Chen & Yiran Guo & Ting Zhao & Jiuwei Lu & Jian Fang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structural basis for the H2AK119ub1-specific DNMT3A-nucleosome interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Moser Carlee & Gupta Mayetri, 2012. "A Generalized Hidden Markov Model for Determining Sequence-based Predictors of Nucleosome Positioning," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-23, January.
    7. Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    8. Monica Naughtin & Zofia Haftek-Terreau & Johan Xavier & Sam Meyer & Maud Silvain & Yan Jaszczyszyn & Nicolas Levy & Vincent Miele & Mohamed Salah Benleulmi & Marc Ruff & Vincent Parissi & Cédric Vaill, 2015. "DNA Physical Properties and Nucleosome Positions Are Major Determinants of HIV-1 Integrase Selectivity," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-28, June.
    9. Rosen, Ori & Thompson, Wesley K., 2009. "A Bayesian regression model for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3773-3786, September.
    10. Anthony Mathelier & Wyeth W Wasserman, 2013. "The Next Generation of Transcription Factor Binding Site Prediction," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-18, September.
    11. Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    12. Wolfram Möbius & Ulrich Gerland, 2010. "Quantitative Test of the Barrier Nucleosome Model for Statistical Positioning of Nucleosomes Up- and Downstream of Transcription Start Sites," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-11, August.
    13. Linfeng Gao & Yiran Guo & Mahamaya Biswal & Jiuwei Lu & Jiekai Yin & Jian Fang & Xinyi Chen & Zengyu Shao & Mengjiang Huang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2022. "Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Hu, Zhixiong & Prado, Raquel, 2023. "Fast Bayesian inference on spectral analysis of multivariate stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    15. Guo-Cheng Yuan & Jun S Liu, 2008. "Genomic Sequence Is Highly Predictive of Local Nucleosome Depletion," PLOS Computational Biology, Public Library of Science, vol. 4(1), pages 1-11, January.
    16. Leelavati Narlikar & Raluca Gordân & Alexander J Hartemink, 2007. "A Nucleosome-Guided Map of Transcription Factor Binding Sites in Yeast," PLOS Computational Biology, Public Library of Science, vol. 3(11), pages 1-10, November.
    17. Matti Annala & Kirsti Laurila & Harri Lähdesmäki & Matti Nykter, 2011. "A Linear Model for Transcription Factor Binding Affinity Prediction in Protein Binding Microarrays," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-13, May.
    18. Wei Chen & Hao Lin & Peng-Mian Feng & Chen Ding & Yong-Chun Zuo & Kuo-Chen Chou, 2012. "iNuc-PhysChem: A Sequence-Based Predictor for Identifying Nucleosomes via Physicochemical Properties," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    19. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Chau, Van Vinh & von Sachs, Rainer, 2017. "Positive-Definite Multivariate Spectral Estimation: A Geometric Wavelet Approach," LIDAM Discussion Papers ISBA 2017002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.