IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v14y2015i2p143-167n3.html
   My bibliography  Save this article

Inferring bi-directional interactions between circadian clock genes and metabolism with model ensembles

Author

Listed:
  • Grzegorczyk Marco

    (Johann Bernoulli Institute (JBI), Faculteit Wiskunde en Natuurwetenschappen (FWN), Groningen University, Nijenborgh 9, Postbus 407, 9747 AG Groningen 9700 AK, The Netherlands)

  • Aderhold Andrej

    (School of Mathematics and Statistics, University of Glasgow, 15 University Gardens, Glasgow G12 8QW, UK)

  • Husmeier Dirk

    (School of Mathematics and Statistics, University of Glasgow, 15 University Gardens, Glasgow G12 8QW, UK)

Abstract

There has been much interest in reconstructing bi-directional regulatory networks linking the circadian clock to metabolism in plants. A variety of reverse engineering methods from machine learning and computational statistics have been proposed and evaluated. The emphasis of the present paper is on combining models in a model ensemble to boost the network reconstruction accuracy, and to explore various model combination strategies to maximize the improvement. Our results demonstrate that a rich ensemble of predictors outperforms the best individual model, even if the ensemble includes poor predictors with inferior individual reconstruction accuracy. For our application to metabolomic and transcriptomic time series from various mutagenesis plants grown in different light-dark cycles we also show how to determine the optimal time lag between interactions, and we identify significant interactions with a randomization test. Our study predicts new statistically significant interactions between circadian clock genes and metabolites in Arabidopsis thaliana, and thus provides independent statistical evidence that the regulation of metabolism by the circadian clock is not uni-directional, but that there is a statistically significant feedback mechanism aiming from metabolism back to the circadian clock.

Suggested Citation

  • Grzegorczyk Marco & Aderhold Andrej & Husmeier Dirk, 2015. "Inferring bi-directional interactions between circadian clock genes and metabolism with model ensembles," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 143-167, April.
  • Handle: RePEc:bpj:sagmbi:v:14:y:2015:i:2:p:143-167:n:3
    DOI: 10.1515/sagmb-2014-0041
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2014-0041
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2014-0041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Haydon & Olga Mielczarek & Fiona C. Robertson & Katharine E. Hubbard & Alex A. R. Webb, 2013. "Photosynthetic entrainment of the Arabidopsis thaliana circadian clock," Nature, Nature, vol. 502(7473), pages 689-692, October.
    2. Grzegorczyk Marco & Husmeier Dirk, 2012. "A Non-Homogeneous Dynamic Bayesian Network with Sequentially Coupled Interaction Parameters for Applications in Systems and Synthetic Biology," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-62, July.
    3. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    4. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aderhold Andrej & Husmeier Dirk & Grzegorczyk Marco, 2014. "Statistical inference of regulatory networks for circadian regulation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 227-273, June.
    2. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    3. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    4. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    6. Kakamu, Kazuhiko & Yunoue, Hideo & Kuramoto, Takashi, 2014. "Spatial patterns of flypaper effects for local expenditure by policy objective in Japan: A Bayesian approach," Economic Modelling, Elsevier, vol. 37(C), pages 500-506.
    7. Parent, Olivier & LeSage, James P., 2011. "A space-time filter for panel data models containing random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 475-490, January.
    8. Gary Bolton & Duncan Fong & Paul Mosquin, 2003. "Bayes Factors with an Application to Experimental Economics," Experimental Economics, Springer;Economic Science Association, vol. 6(3), pages 311-325, November.
    9. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    10. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Wang Xiaoming & Dinu Irina & Liu Wei & Yasui Yutaka, 2011. "Linear Combination Test for Hierarchical Gene Set Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-18, March.
    12. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    14. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    15. Moeltner, Klaus, 2019. "Bayesian nonlinear meta regression for benefit transfer," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 44-62.
    16. Bala Rajaratnam & Dario Vincenzi, 2016. "A theoretical study of Stein's covariance estimator," Biometrika, Biometrika Trust, vol. 103(3), pages 653-666.
    17. Will Penny & Biswa Sengupta, 2016. "Annealed Importance Sampling for Neural Mass Models," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-25, March.
    18. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    19. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    20. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:14:y:2015:i:2:p:143-167:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.