On Gene Ranking Using Replicated Microarray Time Course Data
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yuan, Ming & Kendziorski, Christina, 2006. "Hidden Markov Models for Microarray Time Course Data in Multiple Biological Conditions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1323-1332, December.
- F. Hong & H. Li, 2006. "Functional Hierarchical Models for Identifying Genes with Different Time-Course Expression Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 534-544, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sayantee Jana & Narayanaswamy Balakrishnan & Dietrich Rosen & Jemila Seid Hamid, 2017. "High dimensional extension of the growth curve model and its application in genetics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(2), pages 273-292, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Farcomeni Alessio & Arima Serena, 2012. "A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-31, June.
- Vinciotti Veronica & Yu Keming, 2009. "M-quantile Regression Analysis of Temporal Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-22, September.
- Yuan, Ming, 2006. "Flexible temporal expression profile modelling using the Gaussian process," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1754-1764, December.
- Zhang Yuping & Tibshirani Robert J. & Davis Ronald W., 2010. "Predicting Patient Survival from Longitudinal Gene Expression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-23, November.
- Hamid Jemila S & Beyene Joseph, 2009. "A Multivariate Growth Curve Model for Ranking Genes in Replicated Time Course Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-28, July.
- Coffey Norma & Hinde John, 2011. "Analyzing Time-Course Microarray Data Using Functional Data Analysis - A Review," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, May.
- Hou Jiayi & Archer Kellie J., 2015. "Regularization method for predicting an ordinal response using longitudinal high-dimensional genomic data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(1), pages 93-111, February.
- Yueh-Yun Chi & Joseph G. Ibrahim & Anika Bissahoyo & David W. Threadgill, 2007. "Bayesian Hierarchical Modeling for Time Course Microarray Experiments," Biometrics, The International Biometric Society, vol. 63(2), pages 496-504, June.
- Nanshan, Muye & Zhang, Nan & Xun, Xiaolei & Cao, Jiguo, 2022. "Dynamical modeling for non-Gaussian data with high-dimensional sparse ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Lu Zhiheng K. & O. Brian Allen & Desmond Anthony F., 2012. "An Order Estimation Based Approach to Identify Response Genes for Microarray Time Course Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-34, December.
- Shojaie Ali & Michailidis George, 2010. "Network Enrichment Analysis in Complex Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-36, May.
- Sayantee Jana & Narayanaswamy Balakrishnan & Dietrich Rosen & Jemila Seid Hamid, 2017. "High dimensional extension of the growth curve model and its application in genetics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(2), pages 273-292, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:65:y:2009:i:1:p:40-51. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.