IDEAS home Printed from https://ideas.repec.org/a/bpj/jtsmet/v1y2009i1n1.html
   My bibliography  Save this article

Statistical Fourier Analysis: Clarifications and Interpretations

Author

Listed:
  • Pollock Stephen D.S.G.

    (University Leicester)

Abstract

This paper expounds some of the results of Fourier theory that are essential to the statistical analysis of time series. It employs the algebra of circulant matrices to expose the structure of the discrete Fourier transform and to elucidate the filtering operations that may be applied to finite data sequences.An ideal filter with a gain of unity throughout the pass band and a gain of zero throughout the stop band is commonly regarded as incapable of being realised in finite samples. It is shown here that, to the contrary, such a filter can be realised both in the time domain and in the frequency domain.The algebra of circulant matrices is also helpful in revealing the nature of statistical processes that are band limited in the frequency domain. In order to apply the conventional techniques of autoregressive moving-average modelling, the data generated by such processes must be subjected to anti-aliasing filtering and sub sampling. These techniques are also described.It is argued that band-limited processes are more prevalent in statistical and econometric time series than is commonly recognised.

Suggested Citation

  • Pollock Stephen D.S.G., 2009. "Statistical Fourier Analysis: Clarifications and Interpretations," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-49, April.
  • Handle: RePEc:bpj:jtsmet:v:1:y:2009:i:1:n:1
    DOI: 10.2202/1941-1928.1004
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1941-1928.1004
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1941-1928.1004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Agustin Maravall & David A. Pierce, 1987. "A Prototypical Seasonal Adjustment Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(2), pages 177-193, March.
    2. Pollock, D S G, 2001. "Filters for Short Non-stationary Sequences," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(5), pages 341-355, August.
    3. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    4. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    5. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    6. Pollock, D. S. G., 2000. "Trend estimation and de-trending via rational square-wave filters," Journal of Econometrics, Elsevier, vol. 99(2), pages 317-334, December.
    7. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    8. D.S.G. Pollock, 2007. "Investigating Economic Trends And Cycles," Discussion Papers in Economics 07/17, Division of Economics, School of Business, University of Leicester, revised Apr 2008.
    9. Adrian Pagan, 1997. "Towards an Understanding of Some Business Cycle Characteristics," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 30(1), pages 1-15, March.
    10. Nerlove, Marc & Grether, David M. & Carvalho, José L., 1979. "Analysis of Economic Time Series," Elsevier Monographs, Elsevier, edition 1, number 9780125157506 edited by Shell, Karl.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatiana Cesaroni, 2011. "The cyclical behavior of the Italian business survey data," Empirical Economics, Springer, vol. 41(3), pages 747-768, December.
    2. Jason Angelopoulos, 2017. "Time–frequency analysis of the Baltic Dry Index," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 211-233, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pollock, D.S.G., 2006. "Econometric methods of signal extraction," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2268-2292, May.
    2. Stephen Pollock, 2001. "Signal Extraction, Maximum Likelihood Estimation and the Start-up Problem," Working Papers 433, Queen Mary University of London, School of Economics and Finance.
    3. Stephen Pollock, 2001. "Signal Extraction, Maximum Likelihood Estimation and the Start-up Problem," Working Papers 433, Queen Mary University of London, School of Economics and Finance.
    4. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    5. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    6. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    7. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    8. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
    9. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    10. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    11. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
    12. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    13. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    14. Charfeddine, Lanouar & Guégan, Dominique, 2012. "Breaks or long memory behavior: An empirical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5712-5726.
    15. Victor Gomez & Jorg Breitung, 1999. "The Beveridge–Nelson Decomposition: A Different Perspective with New Results," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 527-535, September.
    16. Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
    17. Tommaso Proietti, 2012. "Seasonality, Forecast Extensions And Business Cycle Uncertainty," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 555-569, September.
    18. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    19. Lanouar Charfeddine & Dominique Guegan, 2009. "Breaks or Long Memory Behaviour: An empirical Investigation," Post-Print halshs-00377485, HAL.
    20. Kaiser, Regina & Maravall, Agustin, 2005. "Combining filter design with model-based filtering (with an application to business-cycle estimation)," International Journal of Forecasting, Elsevier, vol. 21(4), pages 691-710.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:1:y:2009:i:1:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.