IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v19y2017i2d10.1057_s41278-016-0052-6.html
   My bibliography  Save this article

Time–frequency analysis of the Baltic Dry Index

Author

Listed:
  • Jason Angelopoulos

    (University of Piraeus)

Abstract

In this paper, the dynamic spectral content of the Baltic Dry Index (BDI) is explored. Conventional spectrum analysis, often utilized in economic time series as a complementary tool, provides a static representation of a specific time period, unsuitable for assessing possible frequency shifts over time. Recent studies have shown that the daily BDI has a rich spectral content, which has never been explored utilizing the domains of time and frequency simultaneously. This work attempts to supplement the discussion of the BDI cyclical behavior by highlighting its evolving structure through time–frequency analysis and contributes to the literature by first, assessing the existence of five distinct cycles within the low-frequency band of the BDI, as well as other high-frequency components; second, constraining their frequency ranges; and third, capturing their variability through time, as well as possible stylized frequency shifts. The data-driven trend removal methodology empirical mode decomposition utilized, improved the interpretability of the time–frequency representations. This approach constitutes a framework for capturing frequency/periodicity variations and drifts of the BDI, useful for risk reduction for both maritime demand and supply side stakeholders.

Suggested Citation

  • Jason Angelopoulos, 2017. "Time–frequency analysis of the Baltic Dry Index," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 211-233, June.
  • Handle: RePEc:pal:marecl:v:19:y:2017:i:2:d:10.1057_s41278-016-0052-6
    DOI: 10.1057/s41278-016-0052-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41278-016-0052-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41278-016-0052-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    2. Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
    3. Moghtaderi, Azadeh & Flandrin, Patrick & Borgnat, Pierre, 2013. "Trend filtering via empirical mode decompositions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 114-126.
    4. Wolfgang Drobetz & Tim Richter & Martin Wambach, 2012. "Dynamics of time-varying volatility in the dry bulk and tanker freight markets," Applied Financial Economics, Taylor & Francis Journals, vol. 22(16), pages 1367-1384, August.
    5. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    6. Batchelor, Roy & Alizadeh, Amir & Visvikis, Ilias, 2007. "Forecasting spot and forward prices in the international freight market," International Journal of Forecasting, Elsevier, vol. 23(1), pages 101-114.
    7. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    8. Kavussanos, Manolis G. & Alizadeh-M, Amir H., 2001. "Seasonality patterns in dry bulk shipping spot and time charter freight rates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(6), pages 443-467, December.
    9. Adland, Roar & Cullinane, Kevin, 2006. "The non-linear dynamics of spot freight rates in tanker markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(3), pages 211-224, May.
    10. Pollock Stephen D.S.G., 2009. "Statistical Fourier Analysis: Clarifications and Interpretations," Journal of Time Series Econometrics, De Gruyter, vol. 1(1), pages 1-49, April.
    11. Fotis Papailias & Dimitrios D. Thomakos & Jiadong Liu, 2017. "The Baltic Dry Index: cyclicalities, forecasting and hedging strategies," Empirical Economics, Springer, vol. 52(1), pages 255-282, February.
    12. Crowley Patrick M., 2012. "How Do You Make A Time Series Sing Like a Choir? Extracting Embedded Frequencies from Economic and Financial Time Series using Empirical Mode Decomposition," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(5), pages 1-31, December.
    13. Lu Jing & Peter B. Marlow & Wang Hui, 2008. "An analysis of freight rate volatility in dry bulk shipping markets," Maritime Policy & Management, Taylor & Francis Journals, vol. 35(3), pages 237-251, June.
    14. Chen Ping, 1996. "A Random Walk or Color Chaos on the Stock Market? Time-Frequency Analysis of S&P Indexes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(2), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joan Mileski & Christopher Clott & Cassia Bomer Galvao & Taliese Laverne, 2020. "Technical analysis: the psychology of the market of dry bulk freight rates," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason Angelopoulos, 2017. "Creating and assessing composite indicators: Dynamic applications for the port industry and seaborne trade," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 126-159, March.
    2. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    3. Sel, Burakhan & Minner, Stefan, 2022. "A hedging policy for seaborne forward freight markets based on probabilistic forecasts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    4. Ageliki Anagnostou & Ioannis Panteladis & Maria Tsiapa, 2015. "Disentangling different patterns of business cycle synchronicity in the EU regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(3), pages 615-641, August.
    5. Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.
    6. Martínez, Juan Francisco & Oda, Daniel, 2021. "Characterization of the Chilean financial cycle, early warning indicators and implications for macro-prudential policies," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(1).
    7. Richard Ashley & Randal Verbrugge, 2009. "Frequency Dependence in Regression Model Coefficients: An Alternative Approach for Modeling Nonlinear Dynamic Relationships in Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 4-20.
    8. Lake, James & Linask, Maia K., 2016. "Could tariffs be pro-cyclical?," Journal of International Economics, Elsevier, vol. 103(C), pages 124-146.
    9. Nath, Hiranya K., 2016. "A note on the cyclical behavior of sectoral employment in the U.S," Economic Analysis and Policy, Elsevier, vol. 50(C), pages 52-61.
    10. Botshekan, Mahmoud & Lucas, André, 2017. "Long-Term versus Short-Term Contingencies in Asset Allocation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(5), pages 2277-2303, October.
    11. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    12. Baffes, John & Kabundi, Alain, 2023. "Commodity price shocks: Order within chaos?," Resources Policy, Elsevier, vol. 83(C).
    13. Ciccarelli, Carlo & Fenoaltea, Stefano & Proietti, Tommaso, 2008. "The comovements of construction in Italy's regions, 1861-1913," MPRA Paper 8870, University Library of Munich, Germany.
    14. Afonso, António & Furceri, Davide, 2010. "Government size, composition, volatility and economic growth," European Journal of Political Economy, Elsevier, vol. 26(4), pages 517-532, December.
    15. Rua, Antonio & Nunes, Luis C., 2005. "Coincident and leading indicators for the euro area: A frequency band approach," International Journal of Forecasting, Elsevier, vol. 21(3), pages 503-523.
    16. Tatiana Cesaroni, 2011. "The cyclical behavior of the Italian business survey data," Empirical Economics, Springer, vol. 41(3), pages 747-768, December.
    17. Heer, Burkhard & Süssmuth, Bernd, 2013. "Tax bracket creep and its effects on income distribution," Journal of Macroeconomics, Elsevier, vol. 38(PB), pages 393-408.
    18. Alessandra Iacobucci & Alain Noullez, 2005. "A Frequency Selective Filter for Short-Length Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 75-102, February.
    19. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72.
    20. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:19:y:2017:i:2:d:10.1057_s41278-016-0052-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.