IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1806.04517.html
   My bibliography  Save this paper

A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy

Author

Listed:
  • Akash Malhotra

Abstract

A measure of relative importance of variables is often desired by researchers when the explanatory aspects of econometric methods are of interest. To this end, the author briefly reviews the limitations of conventional econometrics in constructing a reliable measure of variable importance. The author highlights the relative stature of explanatory and predictive analysis in economics and the emergence of fruitful collaborations between econometrics and computer science. Learning lessons from both, the author proposes a hybrid approach based on conventional econometrics and advanced machine learning (ML) algorithms, which are otherwise, used in predictive analytics. The purpose of this article is two-fold, to propose a hybrid approach to assess relative importance and demonstrate its applicability in addressing policy priority issues with an example of food inflation in India, followed by a broader aim to introduce the possibility of conflation of ML and conventional econometrics to an audience of researchers in economics and social sciences, in general.

Suggested Citation

  • Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
  • Handle: RePEc:arx:papers:1806.04517
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1806.04517
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahul Anand & Ding Ding & Mr. Volodymyr Tulin, 2014. "Food Inflation in India: The Role for Monetary Policy," IMF Working Papers 2014/178, International Monetary Fund.
    2. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    3. Jayatilleke S. Bandara, 2013. "What is Driving India’s Food Inflation? A Survey of Recent Evidence," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 14(1), pages 127-156, March.
    4. Müller, Daniel & Leitão, Pedro J. & Sikor, Thomas, 2013. "Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees," Agricultural Systems, Elsevier, vol. 117(C), pages 66-77.
    5. Kumar, Praduman & Shinoj, P. & Raju, S.S. & Kumar, Anjani & Rich, Karl M. & Msangi, Siwa, 2010. "Factor Demand, Output Supply Elasticities and Supply Projections for Major Crops of India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 23(1), January.
    6. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    7. Shweta Saini & Marta Kozicka, 2014. "Evolution and Critique of Buffer Stocking Policy of India," Working Papers id:6153, eSocialSciences.
    8. Thangzason Sonna & Himanshu Joshi & Alice Sebastin & Upasana Sharma, 2014. "Analytics of Food Inflation in India," Working Papers id:6174, eSocialSciences.
    9. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    10. Olaf Helmer & Nicholas Rescher, 1959. "On the Epistemology of the Inexact Sciences," Management Science, INFORMS, vol. 6(1), pages 25-52, October.
    11. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    12. Susan Athey & Guido Imbens, 2015. "A Measure of Robustness to Misspecification," American Economic Review, American Economic Association, vol. 105(5), pages 476-480, May.
    13. Razia Azen & David V. Budescu, 2006. "Comparing Predictors in Multivariate Regression Models: An Extension of Dominance Analysis," Journal of Educational and Behavioral Statistics, , vol. 31(2), pages 157-180, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akash Malhotra, 2021. "A hybrid econometric–machine learning approach for relative importance analysis: prioritizing food policy," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 549-581, September.
    2. Akash Malhotra & Mayank Maloo, 2017. "Understanding food inflation in India: A Machine Learning approach," Papers 1701.08789, arXiv.org.
    3. Rahul Anand & Naresh Kumar & Mr. Volodymyr Tulin, 2016. "Understanding India’s Food Inflation: The Role of Demand and Supply Factors," IMF Working Papers 2016/002, International Monetary Fund.
    4. Mehmet Güney Celbiş, 2021. "A machine learning approach to rural entrepreneurship," Papers in Regional Science, Wiley Blackwell, vol. 100(4), pages 1079-1104, August.
    5. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    6. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    7. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    8. Galdo, Virgilio & Li, Yue & Rama, Martin, 2021. "Identifying urban areas by combining human judgment and machine learning: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    9. Robertas Damasevicius, 2023. "Progress, Evolving Paradigms and Recent Trends in Economic Analysis," Financial Economics Letters, Anser Press, vol. 2(2), pages 35-47, October.
    10. Mehmet Güney Celbiş & Pui-Hang Wong & Karima Kourtit & Peter Nijkamp, 2021. "Innovativeness, Work Flexibility, and Place Characteristics: A Spatial Econometric and Machine Learning Approach," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    11. Onder Ozgur & Erdal Tanas Karagol & Fatih Cemil Ozbugday, 2021. "Machine learning approach to drivers of bank lending: evidence from an emerging economy," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-29, December.
    12. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    13. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    14. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    15. Paolo Brunori & Vito Peragine & Laura Serlenga, 2019. "Upward and downward bias when measuring inequality of opportunity," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(4), pages 635-661, April.
    16. Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022. "Machine learning in the service of policy targeting: The case of public credit guarantees," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
    17. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    18. Tatiana de Macedo Nogueira Lima, 2022. "Documento de Trabalho 03/2022 - Aprendizado de máquina e antitruste," Documentos de Trabalho 2022030, Conselho Administrativo de Defesa Econômica (Cade), Departamento de Estudos Econômicos.
    19. Smith, Gary, 2019. "The Paradox of Big Data," Economics Department, Working Paper Series 1003, Economics Department, Pomona College, revised 04 Jun 2019.
    20. Fabio Pammolli & Paolo Bonaretti & Massimo Riccaboni & Valentina Tortolini, 2019. "Quali Regole per la Spesa Farmaceutica? - Criticità, Impatti, Proposte," Working Papers CERM 01-2019, Competitività, Regole, Mercati (CERM).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1806.04517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.