IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v3y2015i6p481-498n1.html
   My bibliography  Save this article

Domino Effect Analysis, Assessment and Prevention in Process Industries

Author

Listed:
  • Wu Jun

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing100029, China)

  • Yang Hui

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing100029, China)

  • Cheng Yuan

    (Department of Automation, Tsinghua University, Beijing100084, China)

Abstract

Domino effect is a fairly common phenomenon in process industry accidents, which makes many process industry accidents serious and the consequent losses enhanced. Domino effect of the major accidents in chemical cluster is emphasized. Many researchers have studied domino effect in chemical clusters from different perspectives. In the review, we summarize the research from three aspects: The statistical analysis of domino accidents in chemical process industry, the evaluation of domino accidents and the prevention of domino accidents in chemical clusters by game theory. From the analysis, we can find the characteristic of domino accidents such as the time and the location, the origin and causes of domino accidents. The methods of assessing domino effects such as quantitative risk assessment (QRA), Bayesian networks (BN) and Monte Carlo simulation (MCS) are analyzed. The prevention of domino accidents in chemical clusters using game theory is seldom, and there is still much space for improvement in enterprises’ efforts to prevent risk of domino accidents.

Suggested Citation

  • Wu Jun & Yang Hui & Cheng Yuan, 2015. "Domino Effect Analysis, Assessment and Prevention in Process Industries," Journal of Systems Science and Information, De Gruyter, vol. 3(6), pages 481-498, December.
  • Handle: RePEc:bpj:jossai:v:3:y:2015:i:6:p:481-498:n:1
    DOI: 10.1515/JSSI-2015-0481
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/JSSI-2015-0481
    Download Restriction: no

    File URL: https://libkey.io/10.1515/JSSI-2015-0481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Matellini, D.B. & Wall, A.D. & Jenkinson, I.D. & Wang, J. & Pritchard, R., 2013. "Modelling dwelling fire development and occupancy escape using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 75-91.
    3. Golany, Boaz & Kaplan, Edward H. & Marmur, Abraham & Rothblum, Uriel G., 2009. "Nature plays with dice - terrorists do not: Allocating resources to counter strategic versus probabilistic risks," European Journal of Operational Research, Elsevier, vol. 192(1), pages 198-208, January.
    4. Azaiez, M.N. & Bier, Vicki M., 2007. "Optimal resource allocation for security in reliability systems," European Journal of Operational Research, Elsevier, vol. 181(2), pages 773-786, September.
    5. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2013. "Risk-based design of process systems using discrete-time Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 5-17.
    6. Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
    7. Reniers, Genserik & Soudan, Karel, 2010. "A game-theoretical approach for reciprocal security-related prevention investment decisions," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 1-9.
    8. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    9. Liu, Debin & Wang, XiaoFeng & Camp, Jean, 2008. "Game-theoretic modeling and analysis of insider threats," International Journal of Critical Infrastructure Protection, Elsevier, vol. 1(C), pages 75-80.
    10. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    11. Shafi, Kamran & Bender, Axel & Zhong, Weicai & Abbass, Hussein A., 2012. "Spatio-temporal dynamics of security investments in an interdependent risk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 5004-5017.
    12. Salzano, Ernesto & Cozzani, Valerio, 2005. "The analysis of domino accidents triggered by vapor cloud explosions," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 271-284.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reniers, Genserik & Soudan, Karel, 2010. "A game-theoretical approach for reciprocal security-related prevention investment decisions," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 1-9.
    2. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    3. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2019. "Integrating safety and security resources to protect chemical industrial parks from man-made domino effects: A dynamic graph approach," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    5. Khakzad, Nima & Reniers, Genserik, 2015. "Using graph theory to analyze the vulnerability of process plants in the context of cascading effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 63-73.
    6. Levitin, Gregory & Hausken, Kjell, 2010. "Influence of attacker's target recognition ability on defense strategy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 565-572.
    7. Talarico, Luca & Reniers, Genserik & Sörensen, Kenneth & Springael, Johan, 2015. "MISTRAL: A game-theoretical model to allocate security measures in a multi-modal chemical transportation network with adaptive adversaries," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 105-114.
    8. Zhang, Haoyuan & Marsh, D. William R, 2021. "Managing infrastructure asset: Bayesian networks for inspection and maintenance decisions reasoning and planning," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    9. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    10. Mohsen Golalikhani & Jun Zhuang, 2011. "Modeling Arbitrary Layers of Continuous‐Level Defenses in Facing with Strategic Attackers," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 533-547, April.
    11. Levitin, Gregory & Hausken, Kjell, 2009. "Intelligence and impact contests in systems with redundancy, false targets, and partial protection," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1927-1941.
    12. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    13. Hausken, Kjell, 2024. "Fifty Years of Operations Research in Defense," European Journal of Operational Research, Elsevier, vol. 318(2), pages 355-368.
    14. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    15. Bricha, Naji & Nourelfath, Mustapha, 2014. "Extra-capacity versus protection for supply networks under attack," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 185-196.
    16. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    17. Zare Moayedi, Behzad & Azgomi, Mohammad Abdollahi, 2012. "A game theoretic framework for evaluation of the impacts of hackers diversity on security measures," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 45-54.
    18. Ben Yaghlane, Asma & Azaiez, M. Naceur, 2017. "Systems under attack-survivability rather than reliability: Concept, results, and applications," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1156-1164.
    19. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    20. Wenzel, Lars & Wolf, André, 2013. "Protection against major catastrophes: An economic perspective," HWWI Research Papers 137, Hamburg Institute of International Economics (HWWI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:3:y:2015:i:6:p:481-498:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.