IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i12p1927-1941.html
   My bibliography  Save this article

Intelligence and impact contests in systems with redundancy, false targets, and partial protection

Author

Listed:
  • Levitin, Gregory
  • Hausken, Kjell

Abstract

The paper considers a system consisting of identical elements that can be intentionally attacked. The cumulative performance of the system elements should meet a demand. To prevent loss of demand the defender provides system redundancy (deploying genuine system elements (GEs) with cumulative performance exceeding the demand); deploys false elements (FEs), and protects the GEs. If the attacker cannot distinguish GEs and FEs, he chooses the number of elements to attack and attacks at random these elements distributing his resource evenly among the attacked elements. In order to get the information about the system the attacker allocates a part of his resource into the intelligence activity. Analogously, the defender allocates a part of his resource into the counter-intelligence activity. The attacker's strategy presumes distribution of his resource among the intelligence and attack effort and choice of the number of attacked elements. If the attacker wins the intelligence contest, he can identify both FEs and unprotected GEs ignoring the former ones and destroying the latter ones with negligible effort. The defender's strategy presumes distribution of his resource among the counter-intelligence and the three defensive actions. The paper considers a three-period non-cooperative minmax game between the defender and the attacker and presents an algorithm for determining the agents’ optimal strategies.

Suggested Citation

  • Levitin, Gregory & Hausken, Kjell, 2009. "Intelligence and impact contests in systems with redundancy, false targets, and partial protection," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1927-1941.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:12:p:1927-1941
    DOI: 10.1016/j.ress.2009.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009001616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levitin, Gregory & Hausken, Kjell, 2008. "Protection vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1444-1451.
    2. Gregory Levitin & Kjell Hausken, 2009. "Intelligence and Impact Contests in Systems with Fake Targets," Defense & Security Analysis, Taylor & Francis Journals, vol. 25(2), pages 157-173, June.
    3. Todd Sandler, 2005. "Collective versus unilateral responses to terrorism," Public Choice, Springer, vol. 124(1), pages 75-93, July.
    4. Todd Sandler & Kevin Siqueira, 2006. "Global terrorism: deterrence versus pre-emption," Canadian Journal of Economics, Canadian Economics Association, vol. 39(4), pages 1370-1387, November.
    5. Hausken, Kjell, 2008. "Strategic defense and attack for series and parallel reliability systems," European Journal of Operational Research, Elsevier, vol. 186(2), pages 856-881, April.
    6. Powell, Robert, 2007. "Allocating Defensive Resources with Private Information about Vulnerability," American Political Science Review, Cambridge University Press, vol. 101(4), pages 799-809, November.
    7. Vicki Bier & Santiago Oliveros & Larry Samuelson, 2007. "Choosing What to Protect: Strategic Defensive Allocation against an Unknown Attacker," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 9(4), pages 563-587, August.
    8. Levitin, Gregory & Hausken, Kjell, 2009. "False targets efficiency in defense strategy," European Journal of Operational Research, Elsevier, vol. 194(1), pages 155-162, April.
    9. Azaiez, M.N. & Bier, Vicki M., 2007. "Optimal resource allocation for security in reliability systems," European Journal of Operational Research, Elsevier, vol. 181(2), pages 773-786, September.
    10. Kjell Hausken, 2005. "Production and Conflict Models Versus Rent-Seeking Models," Public Choice, Springer, vol. 123(1), pages 59-93, April.
    11. Hirshleifer, Jack, 1995. "Anarchy and Its Breakdown," Journal of Political Economy, University of Chicago Press, vol. 103(1), pages 26-52, February.
    12. Stergios Skaperdas, 1996. "Contest success functions (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 283-290.
    13. Siqueira, Kevin & Sandler, Todd, 2007. "Terrorist backlash, terrorism mitigation, and policy delegation," Journal of Public Economics, Elsevier, vol. 91(9), pages 1800-1815, September.
    14. Powell, Robert, 2007. "Defending against Terrorist Attacks with Limited Resources," American Political Science Review, Cambridge University Press, vol. 101(3), pages 527-541, August.
    15. Hausken, Kjell, 2008. "Strategic defense and attack for reliability systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1740-1750.
    16. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    17. Arce, Daniel G. & Sandler, Todd, 2007. "Terrorist Signalling and the Value of Intelligence," British Journal of Political Science, Cambridge University Press, vol. 37(4), pages 573-586, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    2. Kjell Hausken, 2019. "Special versus general protection and attack of two assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 53-93.
    3. Wei Wang & Francesco Di Maio & Enrico Zio, 2019. "Adversarial Risk Analysis to Allocate Optimal Defense Resources for Protecting Cyber–Physical Systems from Cyber Attacks," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2766-2785, December.
    4. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Levitin, Gregory & Hausken, Kjell, 2011. "Is it wise to protect false targets?," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1647-1656.
    6. Szidarovszky, Ferenc & Luo, Yi, 2014. "Incorporating risk seeking attitude into defense strategy," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 104-109.
    7. William N. Caballero & Ethan Gharst & David Banks & Jeffery D. Weir, 2023. "Multipolar Security Cooperation Planning: A Multiobjective, Adversarial-Risk-Analysis Approach," Decision Analysis, INFORMS, vol. 20(1), pages 16-39, March.
    8. B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.
    9. Bagchi, Aniruddha & Paul, Jomon A., 2021. "National security vs. human rights: A game theoretic analysis of the tension between these objectives," European Journal of Operational Research, Elsevier, vol. 290(2), pages 790-805.
    10. Dan Kovenock & Brian Roberson, 2012. "Strategic Defense And Attack For Series And Parallel Reliability Systems: Comment," Defence and Peace Economics, Taylor & Francis Journals, vol. 23(5), pages 507-515, October.
    11. Levitin, Gregory & Hausken, Kjell, 2010. "Influence of attacker's target recognition ability on defense strategy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 565-572.
    12. Wang, Shuliang & Sun, Jingya & Zhang, Jianhua & Dong, Qiqi & Gu, Xifeng & Chen, Chen, 2023. "Attack-Defense game analysis of critical infrastructure network based on Cournot model with fixed operating nodes," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    13. Peng, Rui & Xiao, Hui & Guo, Jianjun & Lin, Chen, 2020. "Defending a parallel system against a strategic attacker with redundancy, protection and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Ghostine, Rony & Thiriet, Jean-Marc & Aubry, Jean-François, 2011. "Variable delays and message losses: Influence on the reliability of a control loop," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 160-171.
    15. Levitin, Gregory & Hausken, Kjell, 2013. "Is it wise to leave some false targets unprotected?," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 176-186.
    16. Peng, R. & Zhai, Q.Q. & Levitin, G., 2016. "Defending a single object against an attacker trying to detect a subset of false targets," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 137-147.
    17. Abdolmajid Yolmeh & Melike Baykal-Gürsoy, 2019. "Two-Stage Invest–Defend Game: Balancing Strategic and Operational Decisions," Decision Analysis, INFORMS, vol. 16(1), pages 46-66, March.
    18. Zhang, Xiaoxiong & Ding, Song & Ge, Bingfeng & Xia, Boyuan & Pedrycz, Witold, 2021. "Resource allocation among multiple targets for a defender-attacker game with false targets consideration," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    19. Hausken, Kjell, 2017. "Special versus general protection and attack of parallel and series components," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 239-256.
    20. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2021. "Technology adoption for airport security: Modeling public disclosure and secrecy in an attacker-defender game," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Hausken, Kjell, 2009. "False targets vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 588-595.
    2. Levitin, Gregory & Hausken, Kjell, 2010. "Separation in homogeneous systems with independent identical elements," European Journal of Operational Research, Elsevier, vol. 203(3), pages 625-634, June.
    3. R Peng & G Levitin & M Xie & S H Ng, 2011. "Optimal defence of single object with imperfect false targets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 134-141, January.
    4. Levitin, Gregory & Hausken, Kjell, 2009. "Parallel systems under two sequential attacks," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 763-772.
    5. Levitin, Gregory & Hausken, Kjell, 2009. "Meeting a demand vs. enhancing protections in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1711-1717.
    6. Peng, R. & Levitin, G. & Xie, M. & Ng, S.H., 2010. "Defending simple series and parallel systems with imperfect false targets," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 679-688.
    7. Levitin, Gregory & Hausken, Kjell, 2010. "Influence of attacker's target recognition ability on defense strategy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 565-572.
    8. Kjell Hausken, 2012. "Game Theoretic Analysis of Standby Systems," Chapters, in: Yair Holtzman (ed.), Advanced Topics in Applied Operations Management, IntechOpen.
    9. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    10. Levitin, Gregory & Hausken, Kjell, 2008. "Protection vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1444-1451.
    11. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    12. Kjell Hausken & Gregory Levitin, 2008. "Efficiency of Even Separation of Parallel Elements with Variable Contest Intensity," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1477-1486, October.
    13. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    14. Levitin, Gregory & Hausken, Kjell, 2009. "False targets efficiency in defense strategy," European Journal of Operational Research, Elsevier, vol. 194(1), pages 155-162, April.
    15. G Levitin & K Hausken, 2010. "Defence and attack of systems with variable attacker system structure detection probability," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 124-133, January.
    16. Kjell Hausken, 2019. "Special versus general protection and attack of two assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 53-93.
    17. Hausken, Kjell, 2017. "Special versus general protection and attack of parallel and series components," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 239-256.
    18. Dan Kovenock & Brian Roberson, 2018. "The Optimal Defense Of Networks Of Targets," Economic Inquiry, Western Economic Association International, vol. 56(4), pages 2195-2211, October.
    19. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    20. Shan, Xiaojun & Zhuang, Jun, 2018. "Modeling cumulative defensive resource allocation against a strategic attacker in a multi-period multi-target sequential game," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 12-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:12:p:1927-1941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.