IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v31y2011i4p533-547.html
   My bibliography  Save this article

Modeling Arbitrary Layers of Continuous‐Level Defenses in Facing with Strategic Attackers

Author

Listed:
  • Mohsen Golalikhani
  • Jun Zhuang

Abstract

We propose a novel class of game‐theoretic models for the optimal assignment of defensive resources in a game between a defender and an attacker. Compared to the other game‐theoretic models in the literature of defense allocation problems, the novelty of our model is that we allow the defender to assign her continuous‐level defensive resources to any subset (or arbitrary layers) of targets due to functional similarity or geographical proximity. We develop methods to solve for equilibrium, and illustrate our model using numerical examples. Compared to traditional models that only allow for individual target hardening, our results show that our model could significantly increase the defender's payoff, especially when the unit cost of defense is high.

Suggested Citation

  • Mohsen Golalikhani & Jun Zhuang, 2011. "Modeling Arbitrary Layers of Continuous‐Level Defenses in Facing with Strategic Attackers," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 533-547, April.
  • Handle: RePEc:wly:riskan:v:31:y:2011:i:4:p:533-547
    DOI: 10.1111/j.1539-6924.2010.01531.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2010.01531.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2010.01531.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Levitin, Gregory & Hausken, Kjell, 2008. "Protection vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1444-1451.
    2. Vicki M. Bier & Naraphorn Haphuriwat & Jaime Menoyo & Rae Zimmerman & Alison M. Culpen, 2008. "Optimal Resource Allocation for Defense of Targets Based on Differing Measures of Attractiveness," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 763-770, June.
    3. Golany, Boaz & Kaplan, Edward H. & Marmur, Abraham & Rothblum, Uriel G., 2009. "Nature plays with dice - terrorists do not: Allocating resources to counter strategic versus probabilistic risks," European Journal of Operational Research, Elsevier, vol. 192(1), pages 198-208, January.
    4. Azaiez, M.N. & Bier, Vicki M., 2007. "Optimal resource allocation for security in reliability systems," European Journal of Operational Research, Elsevier, vol. 181(2), pages 773-786, September.
    5. Stergios Skaperdas, 1996. "Contest success functions (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 283-290.
    6. Jun Zhuang & Vicki M. Bier, 2007. "Balancing Terrorism and Natural Disasters---Defensive Strategy with Endogenous Attacker Effort," Operations Research, INFORMS, vol. 55(5), pages 976-991, October.
    7. Gregory Levitin & Kjell Hausken, 2010. "Resource Distribution in Multiple Attacks Against a Single Target," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1231-1239, August.
    8. Powell, Robert, 2007. "Defending against Terrorist Attacks with Limited Resources," American Political Science Review, Cambridge University Press, vol. 101(3), pages 527-541, August.
    9. Kjell Hausken & Vicki M. Bier & Jun Zhuang, 2009. "Defending Against Terrorism, Natural Disaster, and All Hazards," International Series in Operations Research & Management Science, in: Vicki M. M. Bier & M. Naceur Azaiez (ed.), Game Theoretic Risk Analysis of Security Threats, chapter 4, pages 65-97, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kjell Hausken, 2019. "Special versus general protection and attack of two assets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 53-93.
    2. Zhang, Jing & Zhuang, Jun & Behlendorf, Brandon, 2018. "Stochastic shortest path network interdiction with a case study of Arizona–Mexico border," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 62-73.
    3. Chi Zhang & Jose Ramirez-Marquez, 2013. "Protecting critical infrastructures against intentional attacks: a two-stage game with incomplete information," IISE Transactions, Taylor & Francis Journals, vol. 45(3), pages 244-258.
    4. Gary A. Ackerman & Jun Zhuang & Sitara Weerasuriya, 2017. "Cross‐Milieu Terrorist Collaboration: Using Game Theory to Assess the Risk of a Novel Threat," Risk Analysis, John Wiley & Sons, vol. 37(2), pages 342-371, February.
    5. Ridwan Al Aziz & Meilin He & Jun Zhuang, 2020. "An Attacker–defender Resource Allocation Game with Substitution and Complementary Effects," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1481-1506, July.
    6. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    7. Mohammad E. Nikoofal & Mehmet Gümüs, 2015. "On the value of terrorist’s private information in a government’s defensive resource allocation problem," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 533-555, June.
    8. Peiqiu Guan & Jun Zhuang, 2016. "Modeling Resources Allocation in Attacker‐Defender Games with “Warm Up” CSF," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 776-791, April.
    9. Wu, Yipeng & Chen, Zhilong & Zhao, Xudong & Liu, Ying & Zhang, Ping & Liu, Yajiao, 2021. "Robust analysis of cascading failures in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    10. Schlicher, Loe & Lurkin, Virginie, 2024. "Fighting pickpocketing using a choice-based resource allocation model," European Journal of Operational Research, Elsevier, vol. 315(2), pages 580-595.
    11. Wu, Yipeng & Chen, Zhilong & Dang, Junhu & Chen, Yicun & Zhao, Xudong & Zha, Lvying, 2022. "Allocation of defensive and restorative resources in electric power system against consecutive multi-target attacks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Zhang, Jing & Wang, Yan & Zhuang, Jun, 2021. "Modeling multi-target defender-attacker games with quantal response attack strategies," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    14. César Gil & David Rios Insua & Jesus Rios, 2016. "Adversarial Risk Analysis for Urban Security Resource Allocation," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 727-741, April.
    15. Peiqiu Guan & Jing Zhang & Vineet M. Payyappalli & Jun Zhuang, 2018. "Modeling and Validating Public–Private Partnerships in Disaster Management," Decision Analysis, INFORMS, vol. 15(2), pages 55-71, June.
    16. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    17. Lin, Chen & Xiao, Hui & Peng, Rui & Xiang, Yisha, 2021. "Optimal defense-attack strategies between M defenders and N attackers: A method based on cumulative prospect theory," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Hausken, Kjell, 2009. "False targets vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 588-595.
    2. Mohammad E. Nikoofal & Mehmet Gümüs, 2015. "On the value of terrorist’s private information in a government’s defensive resource allocation problem," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 533-555, June.
    3. Peiqiu Guan & Jun Zhuang, 2016. "Modeling Resources Allocation in Attacker‐Defender Games with “Warm Up” CSF," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 776-791, April.
    4. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    5. Shan, Xiaojun & Zhuang, Jun, 2018. "Modeling cumulative defensive resource allocation against a strategic attacker in a multi-period multi-target sequential game," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 12-26.
    6. Mohammad E. Nikoofal & Jun Zhuang, 2012. "Robust Allocation of a Defensive Budget Considering an Attacker's Private Information," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 930-943, May.
    7. Mohammad Ebrahim Nikoofal & Morteza Pourakbar & Mehmet Gumus, 2023. "Securing containerized supply chain through public and private partnership," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2341-2361, July.
    8. Chen Wang & Vicki M. Bier, 2016. "Quantifying Adversary Capabilities to Inform Defensive Resource Allocation," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 756-775, April.
    9. Abdolmajid Yolmeh & Melike Baykal-Gürsoy, 2019. "Two-Stage Invest–Defend Game: Balancing Strategic and Operational Decisions," Decision Analysis, INFORMS, vol. 16(1), pages 46-66, March.
    10. Levitin, Gregory & Hausken, Kjell, 2009. "Intelligence and impact contests in systems with redundancy, false targets, and partial protection," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1927-1941.
    11. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    12. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    13. Peiqiu Guan & Meilin He & Jun Zhuang & Stephen C. Hora, 2017. "Modeling a Multitarget Attacker–Defender Game with Budget Constraints," Decision Analysis, INFORMS, vol. 14(2), pages 87-107, June.
    14. Zhiheng Xu & Jun Zhuang, 2019. "A Study on a Sequential One‐Defender‐N‐Attacker Game," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1414-1432, June.
    15. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    16. Ben Yaghlane, Asma & Azaiez, M. Naceur, 2017. "Systems under attack-survivability rather than reliability: Concept, results, and applications," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1156-1164.
    17. Niyazi Bakır, 2011. "A Stackelberg game model for resource allocation in cargo container security," Annals of Operations Research, Springer, vol. 187(1), pages 5-22, July.
    18. Hausken, Kjell, 2010. "Defense and attack of complex and dependent systems," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 29-42.
    19. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    20. Kjell Hausken & Jun Zhuang, 2016. "The strategic interaction between a company and the government surrounding disasters," Annals of Operations Research, Springer, vol. 237(1), pages 27-40, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:31:y:2011:i:4:p:533-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.