IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v6y2010i1n23.html
   My bibliography  Save this article

A Stochastic EM Type Algorithm for Parameter Estimation in Models with Continuous Outcomes, under Complex Ascertainment

Author

Listed:
  • Grünewald Maria

    (Stockholm University)

  • Humphreys Keith

    (Karolinska Institutet)

  • Hössjer Ola

    (Stockholm University)

Abstract

Outcome-dependent sampling probabilities can be used to increase efficiency in observational studies. For continuous outcomes, appropriate consideration of sampling design in estimating parameters of interest is often computationally cumbersome. In this article, we suggest a Stochastic EM type algorithm for estimation when ascertainment probabilities are known or estimable. The computational complexity of the likelihood is avoided by filling in missing data so that an approximation of the full data likelihood can be used. The method is not restricted to any specific distribution of the data and can be used for a broad range of statistical models.

Suggested Citation

  • Grünewald Maria & Humphreys Keith & Hössjer Ola, 2010. "A Stochastic EM Type Algorithm for Parameter Estimation in Models with Continuous Outcomes, under Complex Ascertainment," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-31, July.
  • Handle: RePEc:bpj:ijbist:v:6:y:2010:i:1:n:23
    DOI: 10.2202/1557-4679.1222
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1222
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. E. Breslow & N. Chatterjee, 1999. "Design and analysis of two‐phase studies with binary outcome applied to Wilms tumour prognosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(4), pages 457-468.
    2. Hua Yun Chen, 2003. "A note on the prospective analysis of outcome‐dependent samples," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 575-584, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Chen & Li Hsu & Kathleen Malone, 2009. "A Frailty-Model-Based Approach to Estimating the Age-Dependent Penetrance Function of Candidate Genes Using Population-Based Case-Control Study Designs: An Application to Data on the BRCA1 Gene," Biometrics, The International Biometric Society, vol. 65(4), pages 1105-1114, December.
    2. Benchimol, Jonathan & El-Shagi, Makram & Saadon, Yossi, 2022. "Do expert experience and characteristics affect inflation forecasts?," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 205-226.
    3. Judith Clarke & Marsha Courchane, 2004. "Implications of Stratified Sampling for Fair Lending Binary Logit Models," The Journal of Real Estate Finance and Economics, Springer, vol. 30(1), pages 5-31, October.
    4. Belitskaya-Levy Ilana & Shao Yongzhao & Goldberg Judith D, 2008. "Systematic Missing-At-Random (SMAR) Design and Analysis for Translational Research Studies," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-28, July.
    5. Schill, Walter & Enders, Dirk & Drescher, Karsten, 2014. "A SAS Package for Logistic Two-Phase Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 57(i09).
    6. Brady Ryan & Ananthika Nirmalkanna & Candemir Cigsar & Yildiz E. Yilmaz, 2023. "Evaluation of Designs and Estimation Methods Under Response-Dependent Two-Phase Sampling for Genetic Association Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 510-539, July.
    7. Jacob M. Maronge & Ran Tao & Jonathan S. Schildcrout & Paul J. Rathouz, 2023. "Generalized case‐control sampling under generalized linear models," Biometrics, The International Biometric Society, vol. 79(1), pages 332-343, March.
    8. Mukherjee, Bhramar & Liu, Ivy, 2009. "A note on bias due to fitting prospective multivariate generalized linear models to categorical outcomes ignoring retrospective sampling schemes," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 459-472, March.
    9. Bryan E. Shepherd & Kyunghee Han & Tong Chen & Aihua Bian & Shannon Pugh & Stephany N. Duda & Thomas Lumley & William J. Heerman & Pamela A. Shaw, 2023. "Multiwave validation sampling for error‐prone electronic health records," Biometrics, The International Biometric Society, vol. 79(3), pages 2649-2663, September.
    10. Xiaofei Wang & Haibo Zhou, 2006. "A Semiparametric Empirical Likelihood Method for Biased Sampling Schemes with Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 62(4), pages 1149-1160, December.
    11. Christopher Vahl & Qing Kang, 2015. "Analysis of an outcome-dependent enriched sample: hypothesis tests," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 387-409, September.
    12. Hoora Moradian & Denis Larocque & François Bellavance, 2017. "$$L_1$$ L 1 splitting rules in survival forests," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 671-691, October.
    13. R. McNamee, 2004. "Two-Phase Sampling for Simultaneous Prevalence Estimation and Case Detection," Biometrics, The International Biometric Society, vol. 60(3), pages 783-792, September.
    14. Judith A. Giles & Marsha J. Courchane, 2000. "Stratified Sample Design for Fair Lending Binary Logit Models," Econometrics Working Papers 0007, Department of Economics, University of Victoria.
    15. Constantine E. Frangakis & Stuart G. Baker, 2001. "Compliance Subsampling Designs for Comparative Research: Estimation and Optimal Planning," Biometrics, The International Biometric Society, vol. 57(3), pages 899-908, September.
    16. Hua Yun Chen, 2007. "A Semiparametric Odds Ratio Model for Measuring Association," Biometrics, The International Biometric Society, vol. 63(2), pages 413-421, June.
    17. Sebastien J.‐P. A. Haneuse & And Jonathan C. Wakefield, 2008. "The combination of ecological and case–control data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 73-93, February.
    18. Deng, Lifeng & Ding, Jieli & Liu, Yanyan & Wei, Chengdong, 2018. "Regression analysis for the proportional hazards model with parameter constraints under case-cohort design," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 194-206.
    19. Jason Dietrich, 2005. "The effects of sampling strategies on the small sample properties of the logit estimator," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(6), pages 543-554.
    20. Ruth M. Pfeiffer & Nilanjan Chatterjee, 2005. "On a Supplemented Case–Control Design," Biometrics, The International Biometric Society, vol. 61(2), pages 584-590, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:6:y:2010:i:1:n:23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.