IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v5y2009i1n22.html
   My bibliography  Save this article

Semiparametrically Efficient Estimation of Conditional Instrumental Variables Parameters

Author

Listed:
  • Kasy Maximilian

    (University of California, Berkeley)

Abstract

In this paper, I propose a set of parameters designed to identify the slope of structural relationships based on a combination of conditioning on covariates and the use of an exogenous instrument. After giving structural interpretations to these parameters in the context of specific semiparametric models, I derive their efficient influence curves in a fully nonparametric context as well as under imposition of restrictions on the instrument. These influence curves give the semiparametric efficiency bounds for regular asymptotically linear estimators of the parameters and allow the construction of asymptotically efficient estimators. Monte Carlo experiments finally demonstrate the good finite sample performance of such estimators.

Suggested Citation

  • Kasy Maximilian, 2009. "Semiparametrically Efficient Estimation of Conditional Instrumental Variables Parameters," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-25, June.
  • Handle: RePEc:bpj:ijbist:v:5:y:2009:i:1:n:22
    DOI: 10.2202/1557-4679.1153
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1153
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    2. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    3. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    4. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carolina Caetano & Juan Carlos Escaniano, 2015. "Identifying Multiple Marginal Effects with a Single Binary Instrument or by Regression Discontinuity," CAEPR Working Papers 2015-009, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    2. Kara E. Rudolph & Iván Díaz, 2022. "When the ends do not justify the means: Learning who is predicted to have harmful indirect effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 573-589, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    2. Cornelissen, Thomas & Dustmann, Christian & Raute, Anna & Schönberg, Uta, 2016. "From LATE to MTE: Alternative methods for the evaluation of policy interventions," Labour Economics, Elsevier, vol. 41(C), pages 47-60.
    3. Kasahara, Hiroyuki & Liang, Yawen & Rodrigue, Joel, 2016. "Does importing intermediates increase the demand for skilled workers? Plant-level evidence from Indonesia," Journal of International Economics, Elsevier, vol. 102(C), pages 242-261.
    4. Hofmarcher, Thomas, 2021. "The effect of education on poverty: A European perspective," Economics of Education Review, Elsevier, vol. 83(C).
    5. Gray, Daniel & Montagnoli, Alberto & Moro, Mirko, 2021. "Does education improve financial behaviors? Quasi-experimental evidence from Britain," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 481-507.
    6. Shuang Chen, 2022. "The Positive Effect of Women’s Education on Fertility in Low-Fertility China," European Journal of Population, Springer;European Association for Population Studies, vol. 38(1), pages 125-161, March.
    7. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org.
    8. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    9. Jonathan Fuhr & Philipp Berens & Dominik Papies, 2024. "Estimating Causal Effects with Double Machine Learning -- A Method Evaluation," Papers 2403.14385, arXiv.org, revised Apr 2024.
    10. Masakure, Oliver, 2016. "The effect of employee loyalty on wages," Journal of Economic Psychology, Elsevier, vol. 56(C), pages 274-298.
    11. Daniel Gray & Alberto Montagnoli & Mirko Moro, 2017. "Does education improve financial outcomes? Quasi-experimental evidence from Britain," Working Papers 2017010, The University of Sheffield, Department of Economics.
    12. Harold Alderman & John Hoddinott & Bill Kinsey, 2006. "Long term consequences of early childhood malnutrition," Oxford Economic Papers, Oxford University Press, vol. 58(3), pages 450-474, July.
    13. S Anukriti & Catalina Herrera‐Almanza & Praveen K. Pathak & Mahesh Karra, 2020. "Curse of the Mummy‐ji: The Influence of Mothers‐in‐Law on Women in India†," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1328-1351, October.
    14. González-Uribe, Juanita & Reyes, Santiago, 2021. "Identifying and boosting “Gazelles”: Evidence from business accelerators," Journal of Financial Economics, Elsevier, vol. 139(1), pages 260-287.
    15. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    16. Asadul Islam & Dietrich K. Fausten, 2008. "Skilled Immigration and Wages in Australia," The Economic Record, The Economic Society of Australia, vol. 84(s1), pages 66-82, September.
    17. Peter G. Backus & Nicky L. Grant, 2019. "How sensitive is the average taxpayer to changes in the tax-price of giving?," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 26(2), pages 317-356, April.
    18. Ea Hoppe Blaabæk & Mads Meier Jæger & Joseph Molitoris, 2020. "Family Size and Educational Attainment: Cousins, Contexts, and Compensation," European Journal of Population, Springer;European Association for Population Studies, vol. 36(3), pages 575-600, July.
    19. Lai, Weizheng, 2024. "The effect of education on voter turnout in China's rural elections," Journal of Economic Behavior & Organization, Elsevier, vol. 221(C), pages 230-247.
    20. Shoya Ishimaru, 2024. "Empirical Decomposition of the IV-OLS Gap with Heterogeneous and Nonlinear Effects," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 505-520, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:5:y:2009:i:1:n:22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.