IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i1p443-455.html
   My bibliography  Save this article

Simulation scenarios for rapid reduction in carbon dioxide emissions in the western electricity system

Author

Listed:
  • Ford, Andrew

Abstract

No abstract is available for this item.

Suggested Citation

  • Ford, Andrew, 2008. "Simulation scenarios for rapid reduction in carbon dioxide emissions in the western electricity system," Energy Policy, Elsevier, vol. 36(1), pages 443-455, January.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:1:p:443-455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(07)00414-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aleksandar Dimitrovski & Andrew Ford & Kevin Tomsovic, 2007. "An interdisciplinary approach to long-term modelling for power system expansion," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 3(1/2), pages 235-264.
    2. Jacoby, Henry D. & Ellerman, A. Denny, 2004. "The safety valve and climate policy," Energy Policy, Elsevier, vol. 32(4), pages 481-491, March.
    3. Andrew Ford, 2002. "Boom and Bust in Power Plant Construction: Lessons from the California Electricity Crisis," Journal of Industry, Competition and Trade, Springer, vol. 2(1), pages 59-74, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saysel, Ali Kerem & Hekimoğlu, Mustafa, 2013. "Exploring the options for carbon dioxide mitigation in Turkish electric power industry: System dynamics approach," Energy Policy, Elsevier, vol. 60(C), pages 675-686.
    2. Ackerman, Frank & Fisher, Jeremy, 2013. "Is there a water–energy nexus in electricity generation? Long-term scenarios for the western United States," Energy Policy, Elsevier, vol. 59(C), pages 235-241.
    3. Andrew Ford, 2018. "Simulating systems with fast and slow dynamics: lessons from the electric power industry," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 222-254, January.
    4. Jiancheng Qin & Hui Tao & Chinhsien Cheng & Karthikeyan Brindha & Minjin Zhan & Jianli Ding & Guijin Mu, 2020. "Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 12(3), pages 1-15, February.
    5. Psomopoulos, C.S. & Skoula, I. & Karras, C. & Chatzimpiros, A. & Chionidis, M., 2010. "Electricity savings and CO2 emissions reduction in buildings sector: How important the network losses are in the calculation?," Energy, Elsevier, vol. 35(1), pages 485-490.
    6. Brkić, Dejan & Tanasković, Toma I., 2008. "Systematic approach to natural gas usage for domestic heating in urban areas," Energy, Elsevier, vol. 33(12), pages 1738-1753.
    7. Franco, Carlos J. & Castaneda, Monica & Dyner, Isaac, 2015. "Simulating the new British Electricity-Market Reform," European Journal of Operational Research, Elsevier, vol. 245(1), pages 273-285.
    8. Edward G. Anderson & David R. Keith & Jose Lopez, 2023. "Opportunities for system dynamics research in operations management for public policy," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1895-1920, June.
    9. Tian, Lixin & Jin, Rulei, 2012. "Theoretical exploration of carbon emissions dynamic evolutionary system and evolutionary scenario analysis," Energy, Elsevier, vol. 40(1), pages 376-386.
    10. Bandyopadhyay, Rubenka & Patiño-Echeverri, Dalia, 2016. "An alternate wind power integration mechanism: Coal plants with flexible amine-based CCS," Renewable Energy, Elsevier, vol. 85(C), pages 704-713.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartvigsson, Elias & Stadler, Michael & Cardoso, Gonçalo, 2018. "Rural electrification and capacity expansion with an integrated modeling approach," Renewable Energy, Elsevier, vol. 115(C), pages 509-520.
    2. Assili, Mohsen & Javidi D.B., M. Hossein & Ghazi, Reza, 2008. "An improved mechanism for capacity payment based on system dynamics modeling for investment planning in competitive electricity environment," Energy Policy, Elsevier, vol. 36(10), pages 3703-3713, October.
    3. Grüll, Georg & Taschini, Luca, 2011. "Cap-and-trade properties under different hybrid scheme designs," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 107-118, January.
    4. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    5. Halvor Briseid Storrøsten, 2012. "Prices vs. quantities: Technology choice, uncertainty and welfare," Discussion Papers 677, Statistics Norway, Research Department.
    6. Bryan K. Mignone & Thomas Alfstad & Aaron Bergman & Kenneth Dubin & Richard Duke & Paul Friley & Andrew Martinez & Matthew Mowers & Karen Palmer & Anthony Paul & Sharon Showalter & Daniel Steinberg & , 2012. "Cost-effectiveness and Economic Incidence of a Clean Energy Standard," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 3).
    7. repec:hum:wpaper:sfb649dp2011-042 is not listed on IDEAS
    8. David M. Newbery & David M. Reiner & Robert A. Ritz, 2018. "When is a carbon price floor desirable?," Working Papers EPRG 1816, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Wood, Peter John & Jotzo, Frank, 2011. "Price floors for emissions trading," Energy Policy, Elsevier, vol. 39(3), pages 1746-1753, March.
    10. Flachsland, Christian & Marschinski, Robert & Edenhofer, Ottmar, 2009. "Global trading versus linking: Architectures for international emissions trading," Energy Policy, Elsevier, vol. 37(5), pages 1637-1647, May.
    11. Stavins, Robert, 2004. "Can an Effective Global Climate Treaty be Based on Sound Science, Rational Economics, and Pragmatic Politics?," Working Paper Series rwp04-020, Harvard University, John F. Kennedy School of Government.
    12. Adrian Amelung, 2016. "Das "Paris-Agreement": Durchbruch der Top-Down-Klimaschutzverhandlungen im Kreise der Vereinten Nationen," Otto-Wolff-Institut Discussion Paper Series 03/2016, Otto-Wolff-Institut für Wirtschaftsordnung, Köln, Deutschland.
    13. Santiago Moreno-Bromberg & Luca Taschini, 2011. "Pollution permits, Strategic Trading and Dynamic Technology Adoption," Papers 1103.2914, arXiv.org.
    14. Gesine Bökenkamp & Wan-Jung Chou & Olav Hohmeyer & Wouter Nijs & Alistair Hunt & Anil Markandya, 2010. "Policy Instruments," Chapters, in: Anil Markandya & Andrea Bigano & Roberto Porchia (ed.), The Social Cost of Electricity, chapter 6, Edward Elgar Publishing.
    15. Brauneis, Alexander & Mestel, Roland & Palan, Stefan, 2013. "Inducing low-carbon investment in the electric power industry through a price floor for emissions trading," Energy Policy, Elsevier, vol. 53(C), pages 190-204.
    16. Hanley Nick & MacKenzie Ian A, 2010. "The Effects of Rent Seeking over Tradable Pollution Permits," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-26, July.
    17. Aldy, Joseph E. & Ley, Eduardo & Parry, Ian, 2008. "A Tax–Based Approach to Slowing Global Climate Change," National Tax Journal, National Tax Association;National Tax Journal, vol. 61(3), pages 493-517, September.
    18. Rousse, Olivier, 2008. "Environmental and economic benefits resulting from citizens' participation in CO2 emissions trading: An efficient alternative solution to the voluntary compensation of CO2 emissions," Energy Policy, Elsevier, vol. 36(1), pages 388-397, January.
    19. Arango, Santiago & Larsen, Erik, 2011. "Cycles in deregulated electricity markets: Empirical evidence from two decades," Energy Policy, Elsevier, vol. 39(5), pages 2457-2466, May.
    20. Jessika Richter & Luis Mundaca, 2015. "Achieving and maintaining institutional feasibility in emissions trading: the case of New Zealand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1487-1509, December.
    21. Sandoff, Anders & Schaad, Gabriela, 2009. "Does EU ETS lead to emission reductions through trade? The case of the Swedish emissions trading sector participants," Energy Policy, Elsevier, vol. 37(10), pages 3967-3977, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:1:p:443-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.