IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v78y2024i2p357-373.html
   My bibliography  Save this article

An informative prior distribution on functions with application to functional regression

Author

Listed:
  • Christophe Abraham

Abstract

We provide a prior distribution for a functional parameter so that its trajectories are smooth and vanish on a given subset. This distribution can be interpreted as the distribution of an initial Gaussian process conditioned to be zero on a given subset. Precisely, we show that the initial Gaussian process is the sum of the conditioned process and an independent process with probability one and that all the processes have the same almost sure regularity. This prior distribution is use to provide an interpretable estimate of the coefficient function in the linear scalar‐on‐function regression; by interpretable, we mean a smooth function that may possibly be zero on some intervals. We apply our model in a simulation and real case studies with two different priors for the null region of the coefficient function. In one case, the null region is known to be an unknown single interval. In the other case, it can be any unknown unions of intervals.

Suggested Citation

  • Christophe Abraham, 2024. "An informative prior distribution on functions with application to functional regression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(2), pages 357-373, May.
  • Handle: RePEc:bla:stanee:v:78:y:2024:i:2:p:357-373
    DOI: 10.1111/stan.12322
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12322
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    2. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    3. Crainiceanu, Ciprian M. & Goldsmith, A. Jeffrey, 2010. "Bayesian Functional Data Analysis Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i11).
    4. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnese Maria Di Brisco & Enea Giuseppe Bongiorno & Aldo Goia & Sonia Migliorati, 2023. "Bayesian flexible beta regression model with functional covariate," Computational Statistics, Springer, vol. 38(2), pages 623-645, June.
    2. Guodong Shan & Yiheng Hou & Baisen Liu, 2020. "Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions," Computational Statistics, Springer, vol. 35(4), pages 2077-2092, December.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Bailly, Hugo & Mortier, Frédéric & Giraud, Gaël, 2024. "Empirical analysis of a debt-augmented Goodwin model for the United States," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 619-633.
    7. Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
    8. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    9. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    10. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    11. Li, Houjian & Tang, Mengqian & Cao, Andi & Guo, Lili, 2024. "How to reduce firm pollution discharges: Does political leaders' gender matter?," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    12. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    13. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
    14. Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2019. "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 91-103.
    15. Franck Rapaport & Christina Leslie, 2010. "Determining Frequent Patterns of Copy Number Alterations in Cancer," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    16. Lu, Zudi & Tjostheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," LSE Research Online Documents on Economics 24133, London School of Economics and Political Science, LSE Library.
    17. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    18. Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.
    19. Hui Ding & Mei Yao & Riquan Zhang, 2023. "A new estimation in functional linear concurrent model with covariate dependent and noise contamination," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 965-989, November.
    20. Molly C. Klanderman & Kathryn B. Newhart & Tzahi Y. Cath & Amanda S. Hering, 2020. "Fault isolation for a complex decentralized waste water treatment facility," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 931-951, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:78:y:2024:i:2:p:357-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.