IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i6d10.1007_s13198-024-02265-3.html
   My bibliography  Save this article

Reliability estimation for inverse Pareto lifetime model based on unified hybrid censored data

Author

Listed:
  • Kapil Kumar

    (Central University of Haryana)

  • Shrawan Kumar

    (Kirori Mal College)

  • Renu Garg

    (Ramanujan College)

  • Indrajeet Kumar

    (Central University of South Bihar)

Abstract

Censoring plays an important role in the reliability and life testing trials due to its cost optimality and time reduction properties. The unified hybrid censoring scheme is the combination of the generalized type-I and type-II hybrid censoring schemes. In this paper, our objective is to study the classical and Bayesian estimation methods of the parameter and reliability characteristics from the inverse Pareto lifetime model under the unified hybrid censoring scheme. In the classical estimation methods, the maximum likelihood and associated asymptotic confidence interval estimators are derived. In Bayesian estimation, the Bayes estimators under squared error loss function and the highest posterior density (HPD) credible intervals based on the informative and non-informative priors are developed. For the Bayesian computations, the Markov chain Monte Carlo techniques are used to compute Bayes and HPD credible interval estimates. A quantitative outcome of the objectives has been shown by a Monte Carlo simulation and with the help of a real-life application.

Suggested Citation

  • Kapil Kumar & Shrawan Kumar & Renu Garg & Indrajeet Kumar, 2024. "Reliability estimation for inverse Pareto lifetime model based on unified hybrid censored data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2473-2482, June.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:6:d:10.1007_s13198-024-02265-3
    DOI: 10.1007/s13198-024-02265-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02265-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02265-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
    2. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2019. "A robust and efficient estimator for the tail index of inverse Pareto distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 431-439.
    3. Bahman Arasteh & Saideh Khosroshahizadeh, 2020. "Software reliability enhancement against hardware transient errors using inherently reliable data structures," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 883-898, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacharya, Ritwik & Pradhan, Biswabrata & Dewanji, Anup, 2015. "Computation of optimum reliability acceptance sampling plans in presence of hybrid censoring," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 91-100.
    2. Xiaojun Zhu & N. Balakrishnan & Helton Saulo, 2019. "On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 759-778, October.
    3. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    4. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    5. López-Fidalgo, J. & Rivas-López, M.J., 2014. "Optimal experimental designs for partial likelihood information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 859-867.
    6. Tzong-Ru Tsai & Yuhlong Lio & Wei-Chen Ting, 2021. "EM Algorithm for Mixture Distributions Model with Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    7. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim, 2021. "On Bayesian approach to composite Pareto models," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-22, September.
    8. Soumya Roy & Biswabrata Pradhan, 2023. "Inference for log‐location‐scale family of distributions under competing risks with progressive type‐I interval censored data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 208-232, May.
    9. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    10. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    11. Zhang, Fode & Shi, Yimin, 2016. "Geometry of exponential family with competing risks and censored data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 234-245.
    12. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    13. Julian Górny & Erhard Cramer, 2018. "Modularization of hybrid censoring schemes and its application to unified progressive hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 173-210, February.
    14. Safari, Muhammad Aslam Mohd & Masseran, Nurulkamal & Ibrahim, Kamarulzaman & Hussain, Saiful Izzuan, 2021. "Measuring income inequality: A robust semi-parametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    15. Díaz, Juan D. & Gutiérrez Cubillos, Pablo & Tapia Griñen, Pablo, 2021. "The exponential Pareto model with hidden income processes: Evidence from Chile," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    16. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.
    17. Arnab Koley & Debasis Kundu, 2017. "On generalized progressive hybrid censoring in presence of competing risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 401-426, May.
    18. Rastogi, Manoj Kumar & Tripathi, Yogesh Mani, 2013. "Estimation using hybrid censored data from a two-parameter distribution with bathtub shape," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 268-281.
    19. Mukhtar M Salah & Essam A Ahmed & Ziyad A Alhussain & Hanan Haj Ahmed & M El-Morshedy & M S Eliwa, 2021. "Statistical inferences for type-II hybrid censoring data from the alpha power exponential distribution," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-16, January.
    20. Zhang, Fode & Shi, Yimin & Wang, Ruibing, 2017. "Geometry of the q-exponential distribution with dependent competing risks and accelerated life testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 552-565.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:6:d:10.1007_s13198-024-02265-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.