IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v17y2008i1p138-162.html
   My bibliography  Save this article

Optimal bandwidth selection for multivariate kernel deconvolution density estimation

Author

Listed:
  • Élie Youndjé
  • Martin Wells

Abstract

No abstract is available for this item.

Suggested Citation

  • Élie Youndjé & Martin Wells, 2008. "Optimal bandwidth selection for multivariate kernel deconvolution density estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 138-162, May.
  • Handle: RePEc:spr:testjl:v:17:y:2008:i:1:p:138-162
    DOI: 10.1007/s11749-006-0027-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-006-0027-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-006-0027-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    2. Marron, James Stephen & Härdle, Wolfgang, 1986. "Random approximations to some measures of accuracy in nonparametric curve estimation," Journal of Multivariate Analysis, Elsevier, vol. 20(1), pages 91-113, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    2. Roy, Arkaprava & Sarkar, Abhra, 2023. "Bayesian semiparametric multivariate density deconvolution via stochastic rotation of replicates," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    2. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    3. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    4. Timmermans, Catherine & Delsol, Laurent & von Sachs, Rainer, 2013. "Using Bagidis in nonparametric functional data analysis: Predicting from curves with sharp local features," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 421-444.
    5. Parmeter, Christopher F., 2008. "The effect of measurement error on the estimated shape of the world distribution of income," Economics Letters, Elsevier, vol. 100(3), pages 373-376, September.
    6. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    7. Max Köhler & Anja Schindler & Stefan Sperlich, 2014. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.
    8. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen V.K., 2007. "Nonparametric density estimation for multivariate bounded data," LIDAM Discussion Papers CORE 2007065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    10. Peter Hall & Tapabrata Maiti, 2008. "Non‐parametric inference for clustered binary and count data when only summary information is available," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 725-738, September.
    11. Estévez-Pérez, Graciela, 2002. "On convergence rates for quadratic errors in kernel hazard estimation," Statistics & Probability Letters, Elsevier, vol. 57(3), pages 231-241, April.
    12. J. Vilar, 1995. "Kernel estimation of the regression function with random sampling times," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 137-178, June.
    13. Hao Dong & Taisuke Otsu & Luke Taylor, 2023. "Bandwidth selection for nonparametric regression with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 42(4), pages 393-419, April.
    14. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    15. Sun, Liuquan, 1997. "Bandwidth choice for hazard rate estimators from left truncated and right censored data," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 101-114, December.
    16. Otsu, Taisuke & Taylor, Luke, 2021. "Specification Testing For Errors-In-Variables Models," Econometric Theory, Cambridge University Press, vol. 37(4), pages 747-768, August.
    17. Wu, Colin O., 1997. "A Cross-Validation Bandwidth Choice for Kernel Density Estimates with Selection Biased Data," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 38-60, April.
    18. Xiaodong Gong & Jiti Gao, 2015. "Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia," Monash Econometrics and Business Statistics Working Papers 6/15, Monash University, Department of Econometrics and Business Statistics.
    19. Yousri Slaoui, 2021. "Recursive non-parametric kernel classification rule estimation for independent functional data," Computational Statistics, Springer, vol. 36(1), pages 79-112, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:17:y:2008:i:1:p:138-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.