Predicting stock index movement using twin support vector machine as an integral part of enterprise system
Author
Abstract
Suggested Citation
DOI: 10.1002/sres.2862
Download full text from publisher
References listed on IDEAS
- Hong Chen & Ling Li & Yong Chen, 2022. "Sustainable growth research – A study on the telecom operators in China," Journal of Management Analytics, Taylor & Francis Journals, vol. 9(1), pages 17-31, January.
- Ulf Norinder & Petra Norinder, 2022. "Predicting Amazon customer reviews with deep confidence using deep learning and conformal prediction," Journal of Management Analytics, Taylor & Francis Journals, vol. 9(1), pages 1-16, January.
- Lixin Shen & Hong Wang & Li Da Xu & Xue Ma & Sohail Chaudhry & Wu He, 2016. "Identity management based on PCA and SVM," Information Systems Frontiers, Springer, vol. 18(4), pages 711-716, August.
- Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
- Hong Chen & Ling Li & Yong Chen, 2021. "Explore success factors that impact artificial intelligence adoption on telecom industry in China," Journal of Management Analytics, Taylor & Francis Journals, vol. 8(1), pages 36-68, January.
- H. Wang, 2004. "An empirical study on using decision support systems to solve very large choice decision problems," International Journal of Management and Enterprise Development, Inderscience Enterprises Ltd, vol. 1(4), pages 375-389.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li Da Xu, 2022. "Systems research on artificial intelligence," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(3), pages 359-360, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shuo Tian & Hangeng Zhao & Xiaobo Xu & Rongchao Mu & Qiang Ma, 2022. "Knowledge chain integration of design structure matrix‐based project team: An integration model," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(3), pages 462-473, May.
- Xueling Li & Yujie Long & Meixi Fan & Yong Chen, 2022. "Drilling down artificial intelligence in entrepreneurial management: A bibliometric perspective," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(3), pages 379-396, May.
- Yu Sun & Xiaobo Xu & Haiqing Yu & Hecheng Wang, 2022. "Impact of value co‐creation in the artificial intelligence innovation ecosystem on competitive advantage and innovation intelligibility," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(3), pages 474-488, May.
- Xueling Li & Xiaoyan Zhang & Yuan Liu & Yuanying Mi & Yong Chen, 2022. "The impact of artificial intelligence on users' entrepreneurial activities," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(3), pages 597-608, May.
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.
- Nazarian, Rafik & Gandali Alikhani, Nadiya & Naderi, Esmaeil & Amiri, Ashkan, 2013. "Forecasting Stock Market Volatility: A Forecast Combination Approach," MPRA Paper 46786, University Library of Munich, Germany.
- Tej Bahadur Shahi & Ashish Shrestha & Arjun Neupane & William Guo, 2020. "Stock Price Forecasting with Deep Learning: A Comparative Study," Mathematics, MDPI, vol. 8(9), pages 1-15, August.
- Dat Thanh Tran & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Tensor Representation in High-Frequency Financial Data for Price Change Prediction," Papers 1709.01268, arXiv.org, revised Nov 2017.
- Tamerlan Mashadihasanli, 2022. "Stock Market Price Forecasting Using the Arima Model: an Application to Istanbul, Turkiye," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 9(2), pages 439-454, July.
- Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
- Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
- Basak, Suryoday & Kar, Saibal & Saha, Snehanshu & Khaidem, Luckyson & Dey, Sudeepa Roy, 2019. "Predicting the direction of stock market prices using tree-based classifiers," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 552-567.
- Muneeb Ahmad & Yousaf Ali Khan & Chonghui Jiang & Syed Jawad Haider Kazmi & Syed Zaheer Abbas, 2023. "The impact of COVID‐19 on unemployment rate: An intelligent based unemployment rate prediction in selected countries of Europe," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 528-543, January.
- Huiwen Wang & Wenyang Huang & Shanshan Wang, 2021. "Forecasting open-high-low-close data contained in candlestick chart," Papers 2104.00581, arXiv.org.
- Uddin, Ajim & Tao, Xinyuan & Yu, Dantong, 2023. "Attention based dynamic graph neural network for asset pricing," Global Finance Journal, Elsevier, vol. 58(C).
- Cenk Ufuk Yıldıran & Abdurrahman Fettahoğlu, 2017. "Forecasting USDTRY rate by ARIMA method," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1335968-133, January.
- Shangkun Deng & Kazuki Yoshiyama & Takashi Mitsubuchi & Akito Sakurai, 2015. "Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 49-89, January.
- Mohammad Almasarweh & S. AL Wadi, 2018. "ARIMA Model in Predicting Banking Stock Market Data," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 309-309, November.
- Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods," Papers 1705.03233, arXiv.org, revised Mar 2020.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:srbeha:v:39:y:2022:i:3:p:428-439. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/1092-7026 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.