IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v18y2016i4d10.1007_s10796-015-9551-8.html
   My bibliography  Save this article

Identity management based on PCA and SVM

Author

Listed:
  • Lixin Shen

    (Dalian Maritime University)

  • Hong Wang

    (North Carolina A&T State University
    Yunnan University of Finance and Economics)

  • Li Da Xu

    (Old Dominion University)

  • Xue Ma

    (Dalian Maritime University)

  • Sohail Chaudhry

    (Villanova University)

  • Wu He

    (Old Dominion University)

Abstract

A new approach for face recognition, based on kernel principal component analysis (KPCA) and support vector machines (SVMs), is presented to improve the recognition performance of the method based on principal component analysis (PCA). This method can simultaneously be applied to solve both the over-fitting problem and the small sample problem. The KPCA method is performed on every facial image of the training set to get the core facial features of the training samples. To ensure that the loss of the image information will be as less as possible, the facial data of high-dimensional feature space is projected into low-dimensional space, and then the SVM face recognition model is established to identify the low-dimensional space facial data. Our experimental results demonstrate that the approach proposed in this paper is efficient, and the recognition accuracy of the proposed method reaches 95.4 %.

Suggested Citation

  • Lixin Shen & Hong Wang & Li Da Xu & Xue Ma & Sohail Chaudhry & Wu He, 2016. "Identity management based on PCA and SVM," Information Systems Frontiers, Springer, vol. 18(4), pages 711-716, August.
  • Handle: RePEc:spr:infosf:v:18:y:2016:i:4:d:10.1007_s10796-015-9551-8
    DOI: 10.1007/s10796-015-9551-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-015-9551-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-015-9551-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shouhui Pan & Li Wang & Kaiyi Wang & Zhuming Bi & Siqing Shan & Bo Xu, 2014. "A Knowledge Engineering Framework for Identifying Key Impact Factors from Safety‐Related Accident Cases," Systems Research and Behavioral Science, Wiley Blackwell, vol. 31(3), pages 383-397, May.
    2. Du, Shichang & Lv, Jun, 2013. "Minimal Euclidean distance chart based on support vector regression for monitoring mean shifts of auto-correlated processes," International Journal of Production Economics, Elsevier, vol. 141(1), pages 377-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengyue Wang & Xin Li & Patrick Y. K. Chau, 2021. "Leveraging Image-Processing Techniques for Empirical Research: Feasibility and Reliability in Online Shopping Context," Information Systems Frontiers, Springer, vol. 23(3), pages 607-626, June.
    2. Eric Golinko & Xingquan Zhu, 2019. "Generalized Feature Embedding for Supervised, Unsupervised, and Online Learning Tasks," Information Systems Frontiers, Springer, vol. 21(1), pages 125-142, February.
    3. Borong Zou & Hong Wang & Hui Li & Ling Li & Yuhan Zhao, 2022. "Predicting stock index movement using twin support vector machine as an integral part of enterprise system," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(3), pages 428-439, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Xue & MacKenzie, Cameron A., 2020. "Distinguishing between common cause variation and special cause variation in a manufacturing system: A simulation of decision making for different types of variation," International Journal of Production Economics, Elsevier, vol. 220(C).
    2. Ketai He & Min Zhang & Ling Zuo & Theyab Alhwiti & Fadel M. Megahed, 2017. "Enhancing the monitoring of 3D scanned manufactured parts through projections and spatiotemporal control charts," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 899-911, April.
    3. Ho, Linda Lee & Aparisi, Francisco, 2016. "ATTRIVAR: Optimized control charts to monitor process mean with lower operational cost," International Journal of Production Economics, Elsevier, vol. 182(C), pages 472-483.
    4. Iziy Azamsadat & Sadeghpour Gildeh Bahram & Monabbati Ehsan, 2017. "Comparison Between the Economic-Statistical Design of Double and Triple Sampling X¯\bar{X} Control Charts," Stochastics and Quality Control, De Gruyter, vol. 32(1), pages 49-61, June.
    5. Leoni, Roberto Campos & Costa, Antonio Fernando Branco & Machado, Marcela Aparecida Guerreiro, 2015. "The effect of the autocorrelation on the performance of the T2 chart," European Journal of Operational Research, Elsevier, vol. 247(1), pages 155-165.
    6. Xueliang Zhou & Pingyu Jiang, 2017. "Variation source identification for deep hole boring process of cutting-hard workpiece based on multi-source information fusion using evidence theory," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 255-270, February.
    7. Khoo, Michael B.C. & Teoh, W.L. & Castagliola, Philippe & Lee, M.H., 2013. "Optimal designs of the double sampling X¯ chart with estimated parameters," International Journal of Production Economics, Elsevier, vol. 144(1), pages 345-357.
    8. Xueliang Zhou & Pingyu Jiang & Xianxiang Wang, 2018. "Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 51-67, January.
    9. Shouhui Pan & Kaiyi Wang & Li Wang & Zhibin Wang & Yanyun Han, 2017. "Risk Assessment System Based on WebGIS for Heavy Metal Pollution in Farmland Soils in China," Sustainability, MDPI, vol. 9(10), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:18:y:2016:i:4:d:10.1007_s10796-015-9551-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.