IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i4p755-768..html
   My bibliography  Save this article

Selective inference with unknown variance via the square-root lasso

Author

Listed:
  • Xiaoying Tian
  • Joshua R Loftus
  • Jonathan E Taylor

Abstract

SummaryThere has been much recent work on inference after model selection in situations where the noise level is known. However, the error variance is rarely known in practice and its estimation is difficult in high-dimensional settings. In this work we propose using the square-root lasso, also known as the scaled lasso, to perform inference for selected coefficients and the noise level simultaneously. The square-root lasso has the property that the choice of a reasonable tuning parameter does not depend on the noise level in the data. We provide valid $p$-values and confidence intervals for coefficients after variable selection and estimates for the model-specific variance. Our estimators perform better in simulations than other estimators of the noise variance. These results make inference after model selection significantly more applicable.

Suggested Citation

  • Xiaoying Tian & Joshua R Loftus & Jonathan E Taylor, 2018. "Selective inference with unknown variance via the square-root lasso," Biometrika, Biometrika Trust, vol. 105(4), pages 755-768.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:755-768.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy045
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Jewell & Paul Fearnhead & Daniela Witten, 2022. "Testing for a change in mean after changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1082-1104, September.
    2. Markus Pelger & Jiacheng Zou, 2022. "Inference for Large Panel Data with Many Covariates," Papers 2301.00292, arXiv.org, revised Mar 2023.
    3. Andrea C. Garcia‐Angulo & Gerda Claeskens, 2023. "Exact uniformly most powerful postselection confidence distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 358-382, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:755-768.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.