IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v77y2009i3p405-414.html
   My bibliography  Save this article

The Coverage Properties of Confidence Regions After Model Selection

Author

Listed:
  • Paul Kabaila

Abstract

It is very common in applied frequentist (“classical”) statistics to carry out a preliminary statistical (i.e. data‐based) model selection by, for example, using preliminary hypothesis tests or minimizing AIC. This is usually followed by the inference of interest, using the same data, based on the assumption that the selected model had been given to us a priori. This assumption is false and it can lead to an inaccurate and misleading inference. We consider the important case that the inference of interest is a confidence region. We review the literature that shows that the resulting confidence regions typically have very poor coverage properties. We also briefly review the closely related literature that describes the coverage properties of prediction intervals after preliminary statistical model selection. A possible motivation for preliminary statistical model selection is a wish to utilize uncertain prior information in the inference of interest. We review the literature in which the aim is to utilize uncertain prior information directly in the construction of confidence regions, without requiring the intermediate step of a preliminary statistical model selection. We also point out this aim as a future direction for research. En statistiques appliquées de l'approche fréquentiste (“classique”), il est courant de procéder à une sélection préliminaire du modèle statistique (c'est‐à‐dire basée sur des données) en utilisant, par exemple, des tests préliminaires fondés sur des hypothèses ou en minimisant AIC. Ceci est généralement suivi par l'inférence d'intérêt, où les mêmes données sont utilisées, et qui suppose que le modèle choisi nous avait été donnéà priori. Cette supposition est erronée et peut entraîner une inférence inexacte et trompeuse. Nous examinons un cas primordial où l'inférence d'intérêt constitue une région de confiance. Nous étudions la documentation qui indique que les régions de confiance qui en résultent ont en principe des propriétés d'application réduites. Nous examinons également de manière succincte les écrits en étroite relation qui décrivent les propriétés d'application des intervalles de prédiction après la sélection préliminaire du modèle statistique. Il est possible que la motivation sous‐tendant la sélection préliminaire du modèle statistique représente un désir d'utilizer des renseignements préalables incertains dans l'inférence d'intérêt. Nous étudions la documentation où l'objectif est d'utilizer des renseignements préalables incertains directement dans l'élaboration de régions de confiance, sans exiger de recourir à l'étape intermédiaire de sélection préliminaire du modèle statistique. Nous précisons également que cet objectif constitue un axe de recherche future.

Suggested Citation

  • Paul Kabaila, 2009. "The Coverage Properties of Confidence Regions After Model Selection," International Statistical Review, International Statistical Institute, vol. 77(3), pages 405-414, December.
  • Handle: RePEc:bla:istatr:v:77:y:2009:i:3:p:405-414
    DOI: 10.1111/j.1751-5823.2009.00089.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2009.00089.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2009.00089.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giles, David E. A. & Srivastava, Virendra K., 1993. "The exact distribution of a least squares regression coefficient estimator after a preliminary t-test," Statistics & Probability Letters, Elsevier, vol. 16(1), pages 59-64, January.
    2. Farchione, David & Kabaila, Paul, 2008. "Confidence intervals for the normal mean utilizing prior information," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1094-1100, July.
    3. Kabaila, Paul & Giri, Khageswor, 2009. "Large-sample confidence intervals for the treatment difference in a two-period crossover trial, utilizing prior information," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 652-658, March.
    4. Kabaila, Paul & Leeb, Hannes, 2006. "On the Large-Sample Minimal Coverage Probability of Confidence Intervals After Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 619-629, June.
    5. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    6. Casella, George & Hwang, Jiunn Tzon, 1987. "Employing vague prior information in the construction of confidence sets," Journal of Multivariate Analysis, Elsevier, vol. 21(1), pages 79-104, February.
    7. Kabaila, Paul, 1998. "Valid Confidence Intervals In Regression After Variable Selection," Econometric Theory, Cambridge University Press, vol. 14(4), pages 463-482, August.
    8. Kabaila, Paul, 1995. "The Effect of Model Selection on Confidence Regions and Prediction Regions," Econometric Theory, Cambridge University Press, vol. 11(3), pages 537-549, June.
    9. Pötscher, B.M., 1991. "Effects of Model Selection on Inference," Econometric Theory, Cambridge University Press, vol. 7(2), pages 163-185, June.
    10. Chiou, Paul, 1997. "Interval estimation of scale parameters following a pre-test for two exponential distributions," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 477-489, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Kabaila & Davide Farchione & Samer Alhelli & Nathan Bragg, 2021. "The effect of a Durbin–Watson pretest on confidence intervals in regression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 4-23, February.
    2. Gueuning, Thomas & Claeskens, Gerda, 2016. "Confidence intervals for high-dimensional partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 13-29.
    3. Barber Benjamin & Weschle Simon & Pierskalla Jan, 2014. "Lobbying and the collective action problem: comparative evidence from enterprise surveys," Business and Politics, De Gruyter, vol. 16(2), pages 1-26, August.
    4. Andrea C. Garcia‐Angulo & Gerda Claeskens, 2023. "Exact uniformly most powerful postselection confidence distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 358-382, March.
    5. Paul Kabaila & A. H. Welsh & Waruni Abeysekera, 2016. "Model-Averaged Confidence Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 35-48, March.
    6. Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 58326, University Library of Munich, Germany, revised 2014.
    7. Kabaila, Paul, 2016. "The finite sample performance of the two-stage analysis of a two-period crossover trial," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 118-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
    2. Shaobo Jin & Sebastian Ankargren, 2019. "Frequentist Model Averaging in Structural Equation Modelling," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 84-104, March.
    3. Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 52858, University Library of Munich, Germany.
    4. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    5. Firmin Doko Tchatoka & Wenjie Wang, 2020. "Uniform Inference after Pretesting for Exogeneity," School of Economics and Public Policy Working Papers 2020-05, University of Adelaide, School of Economics and Public Policy.
    6. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    7. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
    8. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    9. Francis J. DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM, Second Version," PIER Working Paper Archive 14-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 09 Dec 2014.
    10. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Uniform Inference after Pretesting for Exogeneity with Heteroskedastic Data," MPRA Paper 106408, University Library of Munich, Germany.
    11. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    12. Liu, Chu-An, 2012. "A plug-in averaging estimator for regressions with heteroskedastic errors," MPRA Paper 41414, University Library of Munich, Germany.
    13. Francis DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM, Second Version," PIER Working Paper Archive 15-027, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 10 Aug 2015.
    14. Kabaila, Paul & Giri, Khageswor, 2009. "Large-sample confidence intervals for the treatment difference in a two-period crossover trial, utilizing prior information," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 652-658, March.
    15. Phillips, Peter C.B., 2005. "Automated Discovery In Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 3-20, February.
    16. Ruth M. Pfeiffer & Andrew Redd & Raymond J. Carroll, 2017. "On the impact of model selection on predictor identification and parameter inference," Computational Statistics, Springer, vol. 32(2), pages 667-690, June.
    17. Lumsdaine, Robin L. & Okui, Ryo & Wang, Wendun, 2023. "Estimation of panel group structure models with structural breaks in group memberships and coefficients," Journal of Econometrics, Elsevier, vol. 233(1), pages 45-65.
    18. Ali Charkhi & Gerda Claeskens, 2018. "Asymptotic post-selection inference for the Akaike information criterion," Biometrika, Biometrika Trust, vol. 105(3), pages 645-664.
    19. Shaobo Jin, 2022. "Frequentist Model Averaging in Structure Equation Model With Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1130-1145, September.
    20. Hassler, Uwe, 2010. "Testing regression coefficients after model selection through sign restrictions," Economics Letters, Elsevier, vol. 107(2), pages 220-223, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:77:y:2009:i:3:p:405-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.