IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v36y2009i3p369-388.html
   My bibliography  Save this article

Single‐Index Additive Vector Autoregressive Time Series Models

Author

Listed:
  • YEHUA LI
  • MARC G. GENTON

Abstract

. We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single‐indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P‐splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean.

Suggested Citation

  • Yehua Li & Marc G. Genton, 2009. "Single‐Index Additive Vector Autoregressive Time Series Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 369-388, September.
  • Handle: RePEc:bla:scjsta:v:36:y:2009:i:3:p:369-388
    DOI: 10.1111/j.1467-9469.2009.00641.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2009.00641.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2009.00641.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianhua Z. Huang & Haipeng Shen, 2004. "Functional Coefficient Regression Models for Non‐linear Time Series: A Polynomial Spline Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(4), pages 515-534, December.
    2. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    3. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    4. Philippe C. Besse & Herve Cardot & David B. Stephenson, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687, December.
    5. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    6. Jianhua Z. Huang & Lijian Yang, 2004. "Identification of non‐linear additive autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 463-477, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siti Mariam Norrulashikin, 2015. "An Investigation Towards The Suitability Of Vector Autoregressive Approach On Modeling Meteorological Data," Modern Applied Science, Canadian Center of Science and Education, vol. 9(11), pages 1-89, October.
    2. Liao, Jun & Zong, Xianpeng & Zhang, Xinyu & Zou, Guohua, 2019. "Model averaging based on leave-subject-out cross-validation for vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(1), pages 35-60.
    3. Gonçalves, Carla & Bessa, Ricardo J. & Pinson, Pierre, 2021. "A critical overview of privacy-preserving approaches for collaborative forecasting," International Journal of Forecasting, Elsevier, vol. 37(1), pages 322-342.
    4. Binglin Li & Hao Xu & Yufeng Lian & Pai Li & Yong Shao & Chunyu Tan, 2023. "An Empirical Modal Decomposition-Improved Whale Optimization Algorithm-Long Short-Term Memory Hybrid Model for Monitoring and Predicting Water Quality Parameters," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    5. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    6. Tracy Wu & Haiqun Lin & Yan Yu, 2011. "Single-index coefficient models for nonlinear time series," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 37-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Lei & Jiang, Hui & Wang, Huixia, 2019. "A novel partial-linear single-index model for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 110-122.
    2. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    3. Jia Chen & Jiti Gao & Degui Li, 2013. "Estimation in Single-Index Panel Data Models with Heterogeneous Link Functions," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 928-955, November.
    4. Shujie Ma & Peter X.-K. Song, 2015. "Varying Index Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 341-356, March.
    5. Zhang, Wenyang & Li, Degui & Xia, Yingcun, 2015. "Estimation in generalised varying-coefficient models with unspecified link functions," Journal of Econometrics, Elsevier, vol. 187(1), pages 238-255.
    6. Jun Zhang, 2021. "Estimation and variable selection for partial linear single-index distortion measurement errors models," Statistical Papers, Springer, vol. 62(2), pages 887-913, April.
    7. Lexin Li & Liping Zhu & Lixing Zhu, 2011. "Inference on the primary parameter of interest with the aid of dimension reduction estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 59-80, January.
    8. Liu, Jicai & Xu, Peirong & Lian, Heng, 2019. "Estimation for single-index models via martingale difference divergence," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 271-284.
    9. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    10. Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
    11. Liu, Jicai & Zhang, Riquan & Zhao, Weihua & Lv, Yazhao, 2013. "A robust and efficient estimation method for single index models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 226-238.
    12. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    13. Jia Chen & Degui Li & Jiti Gao, 2013. "Non- and Semi-Parametric Panel Data Models: A Selective Review," Monash Econometrics and Business Statistics Working Papers 18/13, Monash University, Department of Econometrics and Business Statistics.
    14. Jiang, Rong & Zhou, Zhan-Gong & Qian, Wei-Min & Chen, Yong, 2013. "Two step composite quantile regression for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 180-191.
    15. Jiang, Rong & Yu, Keming, 2020. "Single-index composite quantile regression for massive data," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    16. Qingming Zou & Zhongyi Zhu, 2014. "M-estimators for single-index model using B-spline," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 225-246, February.
    17. Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2014. "Quantile regression and variable selection for the single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1565-1577, July.
    18. Zhang, Hong-Fan, 2021. "Iterative GMM for partially linear single-index models with partly endogenous regressors," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    19. Wu, Jingwei & Peng, Hanxiang & Tu, Wanzhu, 2019. "Large-sample estimation and inference in multivariate single-index models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 382-396.
    20. Huang, Zhensheng & Zhang, Riquan, 2011. "Efficient empirical-likelihood-based inferences for the single-index model," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 937-947, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:36:y:2009:i:3:p:369-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.