IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v36y2009i1p141-156.html
   My bibliography  Save this article

Cressie–Read Power‐Divergence Statistics for Non‐Gaussian Vector Stationary Processes

Author

Listed:
  • HIROAKI OGATA
  • MASANOBU TANIGUCHI

Abstract

. For a class of vector‐valued non‐Gaussian stationary processes, we develop the Cressie–Read power‐divergence (CR) statistic approach which has been proposed for the i.i.d. case. The CR statistic includes empirical likelihood as a special case. Therefore, by adopting this CR statistic approach, the theory of estimation and testing based on empirical likelihood is greatly extended. We use an extended Whittle likelihood as score function and derive the asymptotic distribution of the CR statistic. We apply this result to estimation of autocorrelation and the AR coefficient, and get narrower confidence intervals than those obtained by existing methods. We also consider the power properties of the test based on asymptotic theory. Under a sequence of contiguous local alternatives, we derive the asymptotic distribution of the CR statistic. The problem of testing autocorrelation is discussed and we introduce some interesting properties of the local power.

Suggested Citation

  • Hiroaki Ogata & Masanobu Taniguchi, 2009. "Cressie–Read Power‐Divergence Statistics for Non‐Gaussian Vector Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 141-156, March.
  • Handle: RePEc:bla:scjsta:v:36:y:2009:i:1:p:141-156
    DOI: 10.1111/j.1467-9469.2008.00618.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2008.00618.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2008.00618.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshihide Kakizawa, 2013. "Frequency domain generalized empirical likelihood method," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(6), pages 691-716, November.
    2. Kun Chen & Ngai Hang Chan & Chun Yip Yau, 2020. "Bartlett correction of frequency domain empirical likelihood for time series with unknown innovation variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1159-1173, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianhong Shi & Qian Yang & Xiongya Li & Weixing Song, 2017. "Effects of measurement error on a class of single-index varying coefficient regression models," Computational Statistics, Springer, vol. 32(3), pages 977-1001, September.
    2. Liugen Xue, 2010. "Empirical Likelihood Local Polynomial Regression Analysis of Clustered Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 644-663, December.
    3. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    4. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    5. Wei Yu & Cuizhen Niu & Wangli Xu, 2014. "An empirical likelihood inference for the coefficient difference of a two-sample linear model with missing response data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 675-693, July.
    6. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    7. Yukitoshi Matsushita & Taisuke Otsu, 2017. "Likelihood inference on semiparametric models: Average derivative and treatment effect," STICERD - Econometrics Paper Series 592, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    8. Hua Liang & Yongsong Qin & Xinyu Zhang & David Ruppert, 2009. "Empirical Likelihood‐Based Inferences for Generalized Partially Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 433-443, September.
    9. Liugen Xue, 2009. "Empirical Likelihood Confidence Intervals for Response Mean with Data Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 671-685, December.
    10. Lexin Li & Liping Zhu & Lixing Zhu, 2011. "Inference on the primary parameter of interest with the aid of dimension reduction estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 59-80, January.
    11. Yang, Yiping & Li, Gaorong & Peng, Heng, 2014. "Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 1-18.
    12. Lu Lin & Lili Liu & Xia Cui & Kangning Wang, 2021. "A generalized semiparametric regression and its efficient estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 1-24, March.
    13. Feng, Sanying & Lian, Heng & Zhu, Fukang, 2016. "Reduced rank regression with possibly non-smooth criterion functions: An empirical likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 139-150.
    14. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2018. "Robust estimation in linear regression models for longitudinal data with covariate measurement errors and outliers," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 261-275.
    15. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    16. Chaohua Dong & Jiti Gao & Dag Tjostheim, 2014. "Estimation for Single-index and Partially Linear Single-index Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 7/14, Monash University, Department of Econometrics and Business Statistics.
    17. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    18. Huang, Zhensheng & Pang, Zhen & Hu, Tao, 2013. "Testing structural change in partially linear single-index models with error-prone linear covariates," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 121-133.
    19. Zhang, Junhua & Feng, Sanying & Li, Gaorong & Lian, Heng, 2011. "Empirical likelihood inference for partially linear panel data models with fixed effects," Economics Letters, Elsevier, vol. 113(2), pages 165-167.
    20. Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:36:y:2009:i:1:p:141-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.