IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v36y2009i1p127-140.html
   My bibliography  Save this article

Kernel Likelihood Inference for Time Series

Author

Listed:
  • CARLO GRILLENZONI

Abstract

. This paper develops non‐parametric techniques for dynamic models whose data have unknown probability distributions. Point estimators are obtained from the maximization of a semiparametric likelihood function built on the kernel density of the disturbances. This approach can also provide Kullback–Leibler cross‐validation estimates of the bandwidth of the kernel densities. Confidence regions are derived from the dual‐empirical likelihood method based on non‐parametric estimates of the scores. Limit theorems for martingale difference sequences support the statistical theory; moreover, simulation experiments and a real case study show the validity of the methods.

Suggested Citation

  • Carlo Grillenzoni, 2009. "Kernel Likelihood Inference for Time Series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 127-140, March.
  • Handle: RePEc:bla:scjsta:v:36:y:2009:i:1:p:127-140
    DOI: 10.1111/j.1467-9469.2008.00617.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2008.00617.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2008.00617.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gonzalez-Rivera, Gloria & Drost, Feike C., 1999. "Efficiency comparisons of maximum-likelihood-based estimators in GARCH models," Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.
    2. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, January.
    3. Carlo Grillenzoni, 1991. "Iterative And Recursive Estimation Of Transfer Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(2), pages 105-127, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    2. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    2. Tindara Addabbo & Anna Maccagnan & Carmen Llorca-Rodríguez & Rosa García-Fernández, 2010. "Income distribution and the effect of the financial crisis on the Italian and Spanish labour markets," Department of Economics 0639, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    3. Walter Beckert, 2015. "Choice in the Presence of Experts," Birkbeck Working Papers in Economics and Finance 1503, Birkbeck, Department of Economics, Mathematics & Statistics.
    4. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    5. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2009. "Copula-based nonlinear quantile autoregression," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 50-67, January.
    7. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    8. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    9. Chor-Yiu Sin, 2014. "Qmle Of A Standard Exponential Acd Model: Asymptotic Distribution And Residual Correlation," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-10.
    10. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    11. Coenen, Gunter & Wieland, Volker, 2005. "A small estimated euro area model with rational expectations and nominal rigidities," European Economic Review, Elsevier, vol. 49(5), pages 1081-1104, July.
    12. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    13. Manuel Gebetsberger & Jakob W. Messner & Georg J. Mayr & Achim Zeileis, 2017. "Estimation methods for non-homogeneous regression models: Minimum continuous ranked probability score vs. maximum likelihood," Working Papers 2017-23, Faculty of Economics and Statistics, Universität Innsbruck.
    14. David T. Frazier & Bonsoo Koo, 2020. "Indirect Inference for Locally Stationary Models," Monash Econometrics and Business Statistics Working Papers 30/20, Monash University, Department of Econometrics and Business Statistics.
    15. Arie Preminger & Uri Ben-zion & David Wettstein, 2007. "The extended switching regression model: allowing for multiple latent state variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 457-473.
    16. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    17. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    18. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    19. Hommes, Cars & Zhu, Mei, 2014. "Behavioral learning equilibria," Journal of Economic Theory, Elsevier, vol. 150(C), pages 778-814.
    20. Takagi, Shingo, 1999. "Bias in maximum likelihood estimator of disequilibrium and sample selection model with error-ridden observations," Economics Letters, Elsevier, vol. 64(2), pages 161-165, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:36:y:2009:i:1:p:127-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.