IDEAS home Printed from https://ideas.repec.org/a/bla/rmgtin/v17y2014i1p37-59.html
   My bibliography  Save this article

Measuring Longevity Risk: An Application to the Royal Canadian Mounted Police Pension Plan

Author

Listed:
  • M. Martin Boyer
  • Joanna Mejza
  • Lars Stentoft

Abstract

An employer that sets up a defined benefit pension plan promises to periodically pay a certain sum to each participant starting at some future date and continuing until death. Although both the future beneficiary and the employer can be asked to finance the plan throughout the beneficiary's career, any shortcoming of funds in the future is often the employer's responsibility. It is therefore essential for the employer to be able to predict with a high degree of confidence the total amount that will be required to cover its future pension obligations. Applying mortality forecasting models to the case of the Royal Canadian Mounted Police pension plan, we illustrate the importance of mortality forecasting to value a pension fund's actuarial liabilities. As future survival rates are uncertain, pensioners may live longer than expected. We find that such longevity risk represents approximately 2.8 percent of the total liability ascribable to retired pensioners (as measured by the relative value at risk at the 95th percentile) and 2.5 percent of the total liabilities ascribable to current regular contributors. Longevity risk compounds the model risk associated with not knowing what is the true mortality model, and we estimate that model risk represents approximately 3.2 percent of total liabilities. The compounded longevity risk therefore represents almost 6 percent of the pension plan's total liabilities.

Suggested Citation

  • M. Martin Boyer & Joanna Mejza & Lars Stentoft, 2014. "Measuring Longevity Risk: An Application to the Royal Canadian Mounted Police Pension Plan," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 17(1), pages 37-59, March.
  • Handle: RePEc:bla:rmgtin:v:17:y:2014:i:1:p:37-59
    DOI: 10.1111/rmir.12018
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rmir.12018
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rmir.12018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keith Ambachtsheer, 2008. "Why We Need a Pension Revolution," Canadian Public Policy, University of Toronto Press, vol. 34(s1), pages 7-14, November.
    2. Pablo Antolin, 2007. "Longevity Risk and Private Pensions," Financial Market Trends, OECD Publishing, vol. 2007(1), pages 107-128.
    3. Boyer, M. Martin & Stentoft, Lars, 2013. "If we can simulate it, we can insure it: An application to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 35-45.
    4. Adair Turner, 2006. "Pensions, Risks, and Capital Markets," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 559-574, December.
    5. M. A. Milevsky & S. D. Promislow & V. R. Young, 2006. "Killing the Law of Large Numbers: Mortality Risk Premiums and the Sharpe Ratio," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 673-686, December.
    6. Katja Hanewald, 2011. "Explaining Mortality Dynamics," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 290-314.
    7. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    8. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    2. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    3. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    4. Helena Chuliá & Montserrat Guillén & Jorge M. Uribe, 2015. "Mortality and Longevity Risks in the United Kingdom: Dynamic Factor Models and Copula-Functions," Working Papers 2015-03, Universitat de Barcelona, UB Riskcenter.
    5. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    6. Samuel Asante Gyamerah & Janet Arthur & Saviour Worlanyo Akuamoah & Yethu Sithole, 2023. "Measurement and Impact of Longevity Risk in Portfolios of Pension Annuity: The Case in Sub Saharan Africa," FinTech, MDPI, vol. 2(1), pages 1-20, January.
    7. James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
    8. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    9. Qi Ming, 2013. "The Impact of Mortality Risk on the Asset and Liability Management of Insurance Companies," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 7(2), pages 81-104, July.
    10. Yang, Sharon S. & Yue, Jack C. & Huang, Hong-Chih, 2010. "Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 254-270, February.
    11. Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Chen, Fen-Ying & Yang, Sharon S. & Huang, Hong-Chih, 2022. "Modeling pandemic mortality risk and its application to mortality-linked security pricing," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 341-363.
    13. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    14. Geng Niu & Bertrand Melenberg, 2014. "Trends in Mortality Decrease and Economic Growth," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1755-1773, October.
    15. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    16. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    17. D’Amato, Valeria & Di Lorenzo, Emilia & Haberman, Steven & Sagoo, Pretty & Sibillo, Marilena, 2018. "De-risking strategy: Longevity spread buy-in," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 124-136.
    18. Kallestrup-Lamb, Malene & Søgaard Laursen, Nicolai, 2024. "Longevity hedge effectiveness using socioeconomic indices," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 242-251.
    19. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    20. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:rmgtin:v:17:y:2014:i:1:p:37-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1098-1616 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.