IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v22y1974i5p1051-1066.html
   My bibliography  Save this article

Optimal Priority-Purchasing and Pricing Decisions in Nonmonopoly and Monopoly Queues

Author

Listed:
  • I. Adiri

    (Technion—Israel Institute of Technology, Haifa, Israel)

  • U. Yechiali

    (Tel Aviv University, Tel Aviv, Israel)

Abstract

An M / M /1 service station (computer center) consists of M separate queues. The i th ( i = 1, 2, …, M ) queue has priority over the j th iff i j . Upon arrival, a customer receives all the information regarding the state of the system and accordingly makes an irrevocable decision as to which queue to join, or rather to balk (leave) and go to a competitor. The higher the priority of the queue, the higher the toll fee to join it but the shorter the time spent in the system. This paper considers nonmonopoly and monopoly cases, and optimal priority-purchasing or balking rules for the newly arrived customer, as well as optimal pricing policies for the service station for both preemptive-resume and non-preemptive-priority disciplines.

Suggested Citation

  • I. Adiri & U. Yechiali, 1974. "Optimal Priority-Purchasing and Pricing Decisions in Nonmonopoly and Monopoly Queues," Operations Research, INFORMS, vol. 22(5), pages 1051-1066, October.
  • Handle: RePEc:inm:oropre:v:22:y:1974:i:5:p:1051-1066
    DOI: 10.1287/opre.22.5.1051
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.22.5.1051
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.22.5.1051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roei Engel & Refael Hassin, 2017. "Customer equilibrium in a single-server system with virtual and system queues," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 161-180, October.
    2. Zhao, Chen & Wang, Zhongbin, 2023. "The impact of line-sitting on a two-server queueing system," European Journal of Operational Research, Elsevier, vol. 308(2), pages 782-800.
    3. Ali K. Parlaktürk & Sunil Kumar, 2004. "Self-Interested Routing in Queueing Networks," Management Science, INFORMS, vol. 50(7), pages 949-966, July.
    4. Zhongbin Wang & Yunan Liu & Lei Fang, 2022. "Pay to activate service in vacation queues," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2609-2627, June.
    5. Zhongbin Wang & Luyi Yang & Shiliang Cui & Jinting Wang, 2021. "In-queue priority purchase: a dynamic game approach," Queueing Systems: Theory and Applications, Springer, vol. 97(3), pages 343-381, April.
    6. David Barbato & Alberto Cesaro & Bernardo D’Auria, 2024. "Equilibrium Strategies for Overtaking-Free Queueing Networks under Partial Information," Mathematics, MDPI, vol. 12(19), pages 1-17, September.
    7. Gabi Hanukov & Shoshana Anily & Uri Yechiali, 2020. "Ticket queues with regular and strategic customers," Queueing Systems: Theory and Applications, Springer, vol. 95(1), pages 145-171, June.
    8. Olga Bountali & Antonis Economou, 2019. "Equilibrium threshold joining strategies in partially observable batch service queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 231-253, June.
    9. Alessandro Arlotto & Andrew E. Frazelle & Yehua Wei, 2019. "Strategic Open Routing in Service Networks," Management Science, INFORMS, vol. 65(2), pages 735-750, February.
    10. Olga Boudali & Antonis Economou, 2013. "The effect of catastrophes on the strategic customer behavior in queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(7), pages 571-587, October.
    11. Gad Allon & Eran Hanany, 2012. "Cutting in Line: Social Norms in Queues," Management Science, INFORMS, vol. 58(3), pages 493-506, March.
    12. Rouba Ibrahim, 2018. "Sharing delay information in service systems: a literature survey," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 49-79, June.
    13. Parlakturk, Ali & Kumar, Sunil, 2004. "Self-Interested Routing in Queueing Networks," Research Papers 1782r, Stanford University, Graduate School of Business.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:22:y:1974:i:5:p:1051-1066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.