IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v45y1997i6p966-973.html
   My bibliography  Save this article

Equilibrium Threshold Strategies: The Case of Queues with Priorities

Author

Listed:
  • Refael Hassin

    (Tel Aviv University, Tel Aviv, Israel)

  • Moshe Haviv

    (The Hebrew University, Jerusalem, Israel)

Abstract

Multiplicity of solutions is typical for systems where the individual's tendency to act in a certain way increases when more of the other individuals in the population act in this way. We provide a detailed analysis of a queueing model in which two priority levels can be purchased. In particular, we compute all of the Nash equilibrium strategies (pure and mixed) of the threshold type.

Suggested Citation

  • Refael Hassin & Moshe Haviv, 1997. "Equilibrium Threshold Strategies: The Case of Queues with Priorities," Operations Research, INFORMS, vol. 45(6), pages 966-973, December.
  • Handle: RePEc:inm:oropre:v:45:y:1997:i:6:p:966-973
    DOI: 10.1287/opre.45.6.966
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.45.6.966
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.45.6.966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghosh, Souvik & Hassin, Refael, 2021. "Inefficiency in stochastic queueing systems with strategic customers," European Journal of Operational Research, Elsevier, vol. 295(1), pages 1-11.
    2. Laurens Debo & Senthil Veeraraghavan, 2014. "Equilibrium in Queues Under Unknown Service Times and Service Value," Operations Research, INFORMS, vol. 62(1), pages 38-57, February.
    3. Laurens G. Debo & Christine Parlour & Uday Rajan, 2012. "Signaling Quality via Queues," Management Science, INFORMS, vol. 58(5), pages 876-891, May.
    4. Lian, Zhaotong & Gu, Xinhua & Wu, Jinbiao, 2016. "A re-examination of experience service offering and regular service pricing under profit maximization," European Journal of Operational Research, Elsevier, vol. 254(3), pages 907-915.
    5. Mark Fackrell & Peter Taylor & Jiesen Wang, 2021. "Strategic customer behavior in an M/M/1 feedback queue," Queueing Systems: Theory and Applications, Springer, vol. 97(3), pages 223-259, April.
    6. Dimitrakopoulos, Y. & Burnetas, A.N., 2016. "Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control," European Journal of Operational Research, Elsevier, vol. 252(2), pages 477-486.
    7. Wang, Jinting & Zhang, Feng, 2013. "Strategic joining in M/M/1 retrial queues," European Journal of Operational Research, Elsevier, vol. 230(1), pages 76-87.
    8. Antonis Economou & Athanasia Manou, 2013. "Equilibrium balking strategies for a clearing queueing system in alternating environment," Annals of Operations Research, Springer, vol. 208(1), pages 489-514, September.
    9. Mor Armony & Constantinos Maglaras, 2004. "Contact Centers with a Call-Back Option and Real-Time Delay Information," Operations Research, INFORMS, vol. 52(4), pages 527-545, August.
    10. Zhongbin Wang & Yunan Liu & Lei Fang, 2022. "Pay to activate service in vacation queues," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2609-2627, June.
    11. Olga Bountali & Antonis Economou, 2019. "Equilibrium threshold joining strategies in partially observable batch service queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 231-253, June.
    12. Gopinath Panda & Veena Goswami, 2022. "Equilibrium Joining Strategies of Positive Customers in a Markovian Queue with Negative Arrivals and Working Vacations," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1439-1466, September.
    13. Pengfei Guo & Refael Hassin, 2011. "Strategic Behavior and Social Optimization in Markovian Vacation Queues," Operations Research, INFORMS, vol. 59(4), pages 986-997, August.
    14. Boudali, Olga & Economou, Antonis, 2012. "Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes," European Journal of Operational Research, Elsevier, vol. 218(3), pages 708-715.
    15. Antonis Economou & Spyridoula Kanta, 2011. "Equilibrium customer strategies and social–profit maximization in the single‐server constant retrial queue," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 107-122, March.
    16. Chamberlain, Jonathan & Simhon, Eran & Starobinski, David, 2021. "Preemptible queues with advance reservations: Strategic behavior and revenue management," European Journal of Operational Research, Elsevier, vol. 293(2), pages 561-578.
    17. Zhongbin Wang & Luyi Yang & Shiliang Cui & Jinting Wang, 2021. "In-queue priority purchase: a dynamic game approach," Queueing Systems: Theory and Applications, Springer, vol. 97(3), pages 343-381, April.
    18. Luyi Yang & Laurens G. Debo & Varun Gupta, 2019. "Search Among Queues Under Quality Differentiation," Management Science, INFORMS, vol. 65(8), pages 3605-3623, August.
    19. Opher Baron & Antonis Economou & Athanasia Manou, 2022. "Increasing social welfare with delays: Strategic customers in the M/G/1 orbit queue," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2907-2924, July.
    20. Roei Engel & Refael Hassin, 2017. "Customer equilibrium in a single-server system with virtual and system queues," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 161-180, October.
    21. Zhao, Chen & Wang, Zhongbin, 2023. "The impact of line-sitting on a two-server queueing system," European Journal of Operational Research, Elsevier, vol. 308(2), pages 782-800.
    22. S. Srivatsa Srinivas & Rahul R. Marathe, 2020. "Equilibrium in a finite capacity M/M/1 queue with unknown service rates consisting of strategic and non-strategic customers," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 329-356, December.
    23. R.E. Lillo, 2001. "Optimal control of an M/G/1 queue with impatient priority customers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 201-209, April.
    24. Olga Boudali & Antonis Economou, 2013. "The effect of catastrophes on the strategic customer behavior in queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(7), pages 571-587, October.
    25. Yasushi Masuda & Akira Tsuji, 2019. "Congestion Control for a System with Parallel Stations and Homogeneous Customers Using Priority Passes," Networks and Spatial Economics, Springer, vol. 19(1), pages 293-318, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:45:y:1997:i:6:p:966-973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.